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SGRec3D

Self-Supervised Pre-training for 3D Scene Graph prediction
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Problem: Large-scale datasets with high-quality relationship
labels are scarce for 3D scene graph learning

Key Idea: Increase label efficiency by self-supervised pre-training

Pre-training: Reconstruction

& No explicit scene graph labels required for pre-training

& Trainable on large-scale 3D datasets such as ScanNet

3. Scene Generations
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Use of a bounding box loss to
earn to reconstruct the overall
ayout of the scene.

Use of a latent shape loss to learn
the shapes of objects encoded by
a pre-trained AtlasNet.

| Node Loss \ | Edge Loss \

The encoder is fine-tuned on a smaller
scene graph dataset with a supervised
loss for objects and predicates.

The decoder is discarded for
fine-tuning.

4. Scene Graph Predictions
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5. 3DSSG Evaluation

Object Predicate Relationships
R@5 R@10 R@3 R@5 R@50 R@100

3DSSG 0.68 0.78 0.89 0.93 0.40 0.66

SGFN 0.70 0.80 0.97 0.99 0.85 0.87

SGRec3D 0.80 0.87 0.97 0.99 0.89 0.91

* More baseline results can be found in the paper

Head Body Tail All

. w/o pre-train  0.88 0.45 0.06 0.30
Objects .

w/ pre-train 0.92 0.78 0.24 0.45

. w/o pre-train  0.94 0.83 0.41 0.57
Predicates ,

w/ pre-train 0.97 0.96 0.65 0.69

| Pre-trained model outperforms baselines by a large margin

I Pre-training is especially effective for rare classes

indication for learned
relationship knowledge
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I 3D Scene Graph predictions contain precise object labels and detailed predicate descriptions
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8. Pre-training strategy

Pre-train Object Predicate
GCN PCL SG R@5 mMR@5 R@3 mR@3
STRL v 0.75 0.35 0.94 0.50
STRL V4 v 0.63 0.23 0.92 0.48
DepthContrast v 0.77 036 094 0.51
DepthContrast v v 0.60 0.22 093 0.50
Ours (no pre-train) v 063 030 094 0.57
Ours (no GCN) v 075 031 094 048
Ours v v 0.80 0.45 0.97 0.69

PCL: point cloud pre-training -— SG: scene graph pre-training

I Point cloud-based pre-trainings are ineffective for 3D scene graphs

| Our SGRec3D scene graph pre-training is very effective
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