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via Object-Level Scene Reconstruction
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Abstract

3D scene graphs are an emerging representation for 3D
scene understanding, combining geometric and semantic
information. However, fully supervised learning of 3D
semantic scene graphs is challenging due to the need
for object-level annotations and especially relationship
labels. Self-supervised pre-training methods have improved
performance in 3D scene understanding but have received
little attention in 3D scene graph prediction. To this end,
we propose Auto3DSG, an autoencoder-based pre-training
method for 3D semantic scene graph prediction. By
reconstructing the 3D input scene from a graph bottleneck,
we reduce the need for object relationship labels and
can leverage large-scale 3D scene understanding datasets.
Our method outperforms baseline models on the main 3D
semantic scene graph benchmark and achieves competitive
results with only 5% labeled data during fine-tuning.

1. Introduction

Scene graphs provide a graph-based representation of a
scene by not only representing the semantic properties of
objects in the scene but also their semantic relationships.
In recent years, scene graphs have seen a wide range of
applications in computer vision and robotics [15, 3, 2, 9].

However, predicting 3D scene graphs comes with several
challenges such as noisy and incomplete sensor data as well
as ambiguous object relationships. While first approaches
have been proposed to learn a 3D scene graph based on a 3D
point cloud [25, 31, 32, 26], these approaches require labels
to be available, as they learn scene graph prediction in a
fully supervised manner. However, the task of annotating
data for 3D scene graph prediction requires much effort,
which is underlined by the scarcity of labeled training data
in this domain. Therefore, our goal is to reduce the need for
such labels when learning to predict 3D scene graphs.

To this end, our contributions are: (i) We propose a novel
autoencoder-based pre-training method for the downstream
task of 3D scene graph prediction. To the best of our
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Figure 1: Auto3DSG Overview.

knowledge, we are the first to propose a pre-training
strategy for 3D scene graph learning which does not require
any additional scene graph labels. (ii) We demonstrate
how to further boost downstream task performance by
pre-training on common 3D datasets, which do not contain
scene graph labels. (iii) We show that our method
outperforms fully supervised baselines on a common 3D
scene graph learning dataset by a considerable margin.
(iv) Our pre-trained method demonstrates significantly
improved label efficiency by requiring only 5%-10% of
scene graph labels to outperform the same model trained
from scratch on a completely labeled dataset.

2. Related Work

3D Scene graph prediction. Wald ef al. [25] introduce
the first 3D scene graph dataset 3DSSG, with focus on
semantics with 3D graph annotations, build upon the
3RScan dataset [24]. Based on this dataset, subsequent
works extended the common principles of 2D scene graph
prediction to 3D [31, 26]. Other works explore 3D scene
generation and manipulation from 3D scene graphs [10], the
use of prior knowledge [32], or the dynamic construction
of 3D scene graphs [27] during the exploration of a 3D
scene. In contrast, our approach focuses on a novel
pre-training strategy for scene graph prediction, without
requiring additional scene graph labels.

Pre-training for 3D scene understanding. In the 2D
domain pre-training on existing large-scale datasets, such
as ImageNet [8], is a common practice. However, the
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Figure 2: Overview of Auto3DSG architecture.

success of pre-training on the 3D equivalent ShapeNet
[4] is often highly dependent on the intricate design
with respect to the downstream task. For instance, [28]
found that ShapeNet pre-training has no positive effect
for 3D segmentation. Nevertheless, 3D representation
learning approaches demonstrate that using only a fraction
of available point labels can lead to similar results as
obtainable with fully supervised methods when pre-trained
with a self-supervised pretext task [13, 33, 28, 14, 6].
However, so far neither of these works have considered 3D
scene graph prediction as the downstream task, nor are their
approaches compatible with graph representations.

3. Method

We propose Auto3DSG, a novel pre-training method to
learn 3D scene graphs from 3D data in an autoencoder-like
manner, as shown in Fig. 2. Like all autoencoding
approaches, our method consists of an encoder that maps
the input to a latent representation and a decoder that
reconstructs the original input from the encoder’s output.
However, our autoencoder-based approach fundamentally
differs to existing autoencoder approaches because it
maintains a graph representation within the network given
a non-graph input and output. The encoder (see Sec. 3.1),
takes a point cloud partitioned using object instances as
input. From this input, the encoder generates a minimal
representation as a 3D scene graph in a graph bottleneck,
by learning to reconstruct from this representation the input
scene using a decoder (see Sec. 3.3). This pre-trained
architecture can then be fine-tuned to predict a semantic 3D
scene graph G = {N, £}, where nodes N represent object
instances within a corresponding 3D point cloud, while
edges £ express predicates that form together with object
nodes semantic relationships (see Sec. 3.4). Each edge in
the graph can represent zero or more relationships.

3.1. Encoder
Given a point cloud P of a scene S with class-agnostic

instance segmentation M provided by an off-the-shelf
instance segmentation method such as Mask3D [23] or a
dataset, we extract each point set PP; containing instance
and its bounding box B; using the mask M ;. Moreover, for
every instance pair (i, j) € ||[M]| x || M]|, we get the point
set P;; using the union of their respective bounding boxes
Bi; = B;UB,. P;, B; and P;; serve as input to our encoder.

The encoder follows the common principles of scene
graph prediction from prior 2D and 3D works [20, 29,

, 25]. We construct an initial graph with node features
¢n, and edge features ¢, from the extracted instance and
bounding box features. Each point set P; is fed into a
shared PointNet [22] to extract features for object nodes.
Every point set P;; is concatenated with a mask which is
equal to 1 if the point corresponds to object ¢, 2 if the object
corresponds to object 7, and O otherwise. The concatenated
feature vector is then fed into another shared PointNet to
extract features for predicate edges.

The extracted node and edge features are then arranged
as triplets ¢;; = (@n. 4, Pp.ij, Pn,;) in a graph structure. This
initial feature graph is passed into a Graph Convolutional
Network (GCN) [16]. The GCN processes the triplets #;;
and propagates the information through the graph

O, %) b = GG, iy Pns) (1)

where G(-) is a GCN with a similar message passing
(e)

procedure to [25] and ¢n7i,¢£3 are the encoded node

features and qbgg ; are the encoded edge features.
3.2. Graph bottleneck

Features are further processed through multiple layers
of graph convolutions, propagating them to neighboring
nodes. A final Multi Layer Perceptron (MLP) f,(-) /
MLP f,(-) is applied to all node features and edge features
respectively to express them as a probability distribution
over the classes.

0\ = softmaz(fa((7)), o) = o(fo(el1))). @)



3.3. Decoder

The goal of our scene decoder is to reconstruct
the original scene from the bottleneck scene graph
representation. To preserve the layout and object details, we
first pass the low-dimensional features into an embedding
MLP which lifts the latent graph representation to a
high-dimensional feature-space. Then, we further decode
the latent graph using another GCN with the same
message passing structure as the encoder. Due to the
low-dimensionality of the bottleneck and the ambiguity
of the scene graph, the decoding step may be affected
by information loss. Thus, we address this problem by
introducing an additional skip-connection between the last
GCN encoder layer and the first GCN decoder layer by
concatenating () the GCN features with the embedded
feature from the bottleneck. For the node and edge features
this is defined as follows
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Reconstructing a full 3D scene is a highly complex task,
giving the sparsity of 3D data. Therefore, we choose
to reconstruct each object individually rather than the
complete scene. To this end, we combine the 3D bounding
box of each object, predicted by the Box-Head, with
the corresponding object reconstruction provided by the
Shape-Head. For the final scene reconstruction, we place
each generated object within its matching bounding box.

For the Box-Head, we implement an MLP to predict
the box extents [h, w, d] and the center location [c;, ¢y, ¢;].
Predicting the 3D orientation of objects using regression
has shown to be difficult given the non-linearity of the
3D rotation space [21]. Therefore, we predict the object’s
orientation angle « separately by means of classifying it
into 1 out of 24 discrete bins, rather than regressing the
angle directly. The Shape-Head consists of an MLP that
predicts a 1D latent vector which is further processed by
the decoder of AtlasNet [11] pre-trained on ShapeNet [4],
which reconstructs the object from the latent vector.

3.4. Pre-training using scene reconstruction

Similarly to masked autoencoders [12], we are able to
utilize an autoencoder architecture to pre-train our model
using a pretext task before fine-tuning it on the downstream
task. For pre-training we learn to reconstruct the 3D
scene by predicting the bounding box and the shape of the
objects. The loss for the object-level scene reconstruction
is composed of three components: (i) a bounding box
regression loss Lypox Which uses the L; distance for the
bounding box parameters, (ii) a cross entropy classification
loss Langle, and (iii) an Ly loss Lghape for the shape
embedding before applying the AtlasNet decoder:

Lrec = N1 Lpbox + N2 ﬁangle + 773Lshape 4)

Object Predicate
Method R@5 R@10 R@3 R@5 R@50 R@100

Relationship

SGGPoint [31] 028 036 068 0.87 0.08 0.10
3D+MSDN [18] 0.61 072 0.86 0.94 047 0.53
3D+KERN [5] 067 077 083 096 0.51 0.58
3D+BGNN [17] 0.71 082 0.87 094 055 0.60

3DSSG [25] 068 078 0.89 093 040 0.66
Liu et al. [19] 074 083 090 096 0.62 0.68
SGFEN [27] 070 080 097 099 0.85 0.87
Auto3DSG 080 087 097 099 089 0.91

Table 1: 3D scene graph prediction on 3DSSG.

where 7; with i € {1,...,3} are weighting factors. Note
that this loss does not rely on scene graph labels which
allows for the use of additional training data from larger
data sets, such as ScanNet [7] or S3DIS [1] as we will
demonstrate in Section 4.

After pre-training using L. loss, the model needs to be
fine-tuned on the downstream task of predicting 3D scene
graphs. For this, we discard the decoder and fine-tune
the pre-trained encoder using the scene graph annotations
from 3DSSG [25] with a fully supervised multi-task loss
Lsg. It consists of a cross-entropy loss L,; for the
node classification and a per-class binary cross entropy loss
L,req for the predicate prediction. The combined loss is
defined as

Lsc = M Lobj + A2Lpred 5)

where A\; and )5 are the respective weighting factors.

4. Experiments
4.1. Experimental setup

Datasets. We evaluate the effectiveness of our proposed
method on real-world 3D scans from the 3DSSG
[25] dataset, which provides semantic 3D scene graph
annotations. The 3D scene graphs are split into smaller
sub-graphs for training and evaluation, resulting in over four
thousand samples. We follow the training/evaluation splits
introduced by Wald et al. [24]. The dataset is comparably
small to other 3D datasets such as ScanNet [7] or S3DIS [1]
without scene graph annotations. However, our approach
allows us to utilize additional datasets without requiring
ground truth scene graph annotations, unlike existing fully
supervised baselines.
Evaluation metrics. Following previous works [26, 31,
s , 30], we evaluate object node classification and
predicate edge prediction separately. To analyze the
overall scene graph prediction performance, we jointly
compute the accuracy of relationships consisting of triples
formed by two nodes and their connecting edge. For
this, we adapt the approach first introduced by Yang et
al. [30]. By multiplying the object node confidences with
the predicate edge probability, we obtain a scored list of
triplet predictions. We then compute the top-k recall metric



first introduced by Lu et al. [20] for scene graph prediction.

4.2. Results

Scene Graph Prediction. We compare our proposed
method on the 3DSSG dataset [25] against the fully
supervised approaches in Tab. 1. Results show that
Auto3DSG outperforms most recent baselines, including
our closest competitor SGFN [27]. Especially on object
node classification Auto3DSG outperforms SGFN by a
large margin (+10%/+7%). We also observe improved
results (+4%) in relationship prediction, while predicate
edge prediction is similar to SGFN. We hypothesize that we
have reached a saturation point for this task on this dataset.

Fig. 3a presents two predicted 3D scene graphs for
complex scenes. Thanks to our pre-training, we are able to
achieve nearly flawless scene graphs. In cases where nodes
are incorrectly predicted, the predicted label is often just
a synonym of the true class. As for the edges, no ground
truth predicate is missing in the predictions. Occasionally
incorrect (common-sense) predicates are predicted.
Object-level scene reconstruction pre-training. Since
our downstream task includes learning relationships in
scene graphs, it is most important that the relationships
present in the original scene remain preserved in our
reconstruction pretext task. This indicates that the model
learns transferable knowledge for the downstream scene
graph prediction during pre-training.

Fig. 3b shows two qualitative samples for reconstructing
a 3D scene from 3DSSG. In general, our model correctly
reconstructs the layouts of the scenes. In the predicted
scenes, the reconstructed objects are located in similar
positions to the ones in the original scene. Relationships
that describe the relative proximity of objects are clearly
preserved, such as Close by, Left, Right, etc. In scene (i), the
objects hanging on walls are generated on the wrong side of
the wall, however relationships like hanging on, attached
to are still maintained in the generation. The shape of the
objects differs in detail compared to the original scenes
because we do not fine-tune the AtlasNet [11] decoder for
more stable training. Still, the approximate shape of the
objects is preserved and relationships like same as, bigger

Input scenes

Reconstructions

(b)
Figure 3: Scene graph predictions left, object-level scene reconstructions right
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than, smaller than are maintained.

Limited fine-tuning data. Our pre-training reduces the
need for labeled scene graph data. We demonstrate this
by fine-tuning our pre-trained model on a fraction of
labeled data, showing marginal impact on object, predicate,
and relationship prediction. Even with 5% of labeled
data, our model achieves acceptable results. Comparing
limited labeled training data to training from scratch,
our pre-trained model significantly outperforms in object
classification and predicate prediction. It requires only
5%-10% of labeled data to outperform the model trained
from scratch on the entire dataset.

5. Discussion and Conclusion

In this paper, we introduce Auto3DSG, a novel
autoencoder-based pre-training method for 3D scene graph
prediction. Our approach significantly improves object and
relationship predictions in 3D scene graphs compared to
fully supervised methods. We achieve these results by
leveraging additional 3D datasets for pre-training, such as
ScanNet and S3DIS that do not contain relationship labels.
Notably, even with limited fine-tuning data, Auto3DSG
yields competitive performance with recent methods.
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