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Introduction

Problem: Large-scale datasets with high-quality relationship
labels are scarce for 3D scene graph learning

Goal: Reduce the need of labels, by leveraging self-supervised
learning without requiring relationship labels

Contributions:

 Novel autoencoder-based pre-training which is trainable on
3D datasets without scene graph labels such as ScanNet

& Auto3DSG boosts 3D scene graph prediction performance
& Auto3DSG outperforms fully supervised methods on 3DSSG

& Improved label-efficiency: Only few samples are required to
outperform the same model trained from scratch

Method

Use of a bounding box
loss to learn to
reconstruct the overall
layout of the scene.

Use of a latent shape
loss to learn the shapes
of objects encoded by
a pre-trained AtlasNet.

An initial feature graph is Encoder

constructed from a point cloud
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Key Idea

Increase label efficiency and available data for scene graph
learning by self-supervised pre-training using reconstruction

Pre-training: Reconstruction

The decoder is discarded

Fine-tuning
for fine-tuning.

The encoder is fine-tuned
on a smaller scene graph
dataset with a supervised
loss for objects and
predicates.

From the scene graph

oy encoding each instance and
pairs of instances using a
PointNet.

PointNet .

GCN
MLP

The features are refined into a
scene graph bottleneck using a
GCN with message passing.
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Qualitative Results

3D Scene Graph Prediction 3D Scene Reconstruction
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Scene Graph Bottleneck

bottleneck, predicated shape
codes are decoded by a
pre-trained AtlasNet.
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The predicted shapes are
Shape AtlasNet n _T placed within the predicted
\ MLP bounding boxes.

3DSSG Evaluation

Object
R@5 R@10
3DSSG 0.68 0.78
SGFN 0.70 0.80
Auto3DSG 0.80 0.87

Relationships
R@50 R@100
0.40 0.66
0.97 0.99 0.85 0.87
0.97 0.99 0.89 0.91

* More baseline results can be found in the paper

Predicate

R@3 R@5
0.89 0.93

Label-efficiency
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