

Autoencoding for 3D Scene Graph Learning via Object-Level Scene Reconstruction

Sebastian Koch^{1,2} Pedro Hermosilla³ Narunas Vaskevicius¹ Mirco Colosi¹ Timo Ropinski²

PARIS

SG2RL 2023

Introduction

Problem: Large-scale datasets with high-quality relationship labels are scarce for 3D scene graph learning

Goal: Reduce the need of labels, by leveraging self-supervised learning without requiring relationship labels

Key Idea

Increase label efficiency and available data for scene graph learning by self-supervised pre-training using reconstruction

Pre-training: Reconstruction

Contributions:

- Novel autoencoder-based pre-training which is trainable on \checkmark 3D datasets without scene graph labels such as ScanNet
- Auto3DSG boosts 3D scene graph prediction performance
- Auto3DSG outperforms fully supervised methods on 3DSSG
- Improved label-efficiency: Only few samples are required to outperform the same model trained from scratch

Method

Qualitative Results

3D Scene Graph Prediction

3D Scene Reconstruction

3DSSG Evaluation

	Object		Predicate		Relationships	
	R@5	R@10	R@3	R@5	R@50	R@100
3DSSG	0.68	0.78	0.89	0.93	0.40	0.66
SGFN	0.70	0.80	0.97	0.99	0.85	0.87
Auto3DSG	0.80	0.87	0.97	0.99	0.89	0.91

* More baseline results can be found in the paper

Label-efficiency

