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Abstract

Environment understanding is an essential task for a robot that is to interact with its
environment. Robot grasping and object manipulation, for example, require that the robot
exactly knows where objects are placed and how they are orientated in the 3D world. This
is the problem that 6D Pose Estimation aims to solve. Utilizing different sensor modalities
commonly used in robotics like images, depth maps and/or point clouds combined with
modern deep learning methods, makes it possible to accurately estimate the 6D poses of
different real-world objects. However, challenges like occlusions, symmetries and noisy
sensor data make 6D Pose Estimation difficult. Nevertheless, current state-of-the-art methods
already achieve almost perfect predictions required for robot grasping in simple scenarios.
Most current approaches limited themselves to using only a single viewpoint of the observed
scene. This is usually fine for scenes that are not too cluttered. But with a growing number of
objects, it becomes likely that an object is partially or even completely occluded by another
object. Here, it is advantageous to observe the scene from multiple viewpoints to decrease the
amount of occluded area. Apart from occlusions, object symmetries offer a big challenge for
current pose estimation methods. This is because current 6D Pose Estimation methods regress
the object pose from predicted 3D keypoints, which might have symmetric counterparts.
In supervised learning, this needs extra care, so the network does not learn a compromise
between all symmetric keypoints.
In this thesis, we propose a novel multi-view and symmetry-aware extension of a state-
of-the-art single-view approach for 6D Pose Estimation. This approach is trained and
evaluated on multiple custom synthetic datasets, which are rendered in a photorealistic
manner. Additionally, we adapt the public YCB-Video dataset to support multiple views and
evaluate our model against the current best performing method on this dataset. We assume
known camera poses, but also train and evaluate on imprecisely measured camera positions.
Furthermore, we propose a new loss function for training in a symmetry-aware manner
by explicitly supervising the keypoint predictions with the original keypoints and their
symmetric counterparts. Our results show that our novel multi-view approach is robust to
changes in the camera poses, and it outperforms its single-view equivalent in highly cluttered
scenes by a large margin. We marginally improve over our closest multi-view competitor.
Utilizing our symmetry-aware training further improves the accuracy of the estimated poses,
outperforming all other methods on the pose estimation of symmetric objects across all
evaluated datasets.

5





Acknowledgments

First of all, I would like to thank Prof. Dr. Andreas Geiger and Prof. Dr. Gerhard Neumann
for agreeing to be the supervising professors of this thesis and providing guidance along the
way. Furthermore, I would like to thank my advisor Fabian Duffhauß for his time, guidance
and insights during my thesis. Finally, I would also like to thank Bosch for providing the
computational resources needed to complete this thesis.

7





Contents

1. Introduction 11

2. Theoretical Background 13
2.1. 6D Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2. 6D Pose Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1. Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2. Rotation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3. Transformation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3. Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1. Reflectional Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2. Rotational Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4. Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1. Average Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2. Average Closest Point Distance . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3. Average (Closest Point) Distance . . . . . . . . . . . . . . . . . . . . . . 17
2.4.4. Area under the Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.5. Average Distance Precision . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5. Advanced Network Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.1. Farthest Point Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2. Mean Shift Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3. Related Work 19
3.1. Pose Estimation with RGB Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2. Pose Estimation with Depth Data . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3. Pose Estimation with RGB-D Data . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4. Pose Estimation with Multi-View Data . . . . . . . . . . . . . . . . . . . . . . . 21

4. Method 25
4.1. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1. YCB-Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2. SCAPE YCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.3. SCAPE 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.4. SCAPE YCB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2. Proposed Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1. FFB6D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2. Multi-View FFB6D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3. FFB6D Symmetry Extension . . . . . . . . . . . . . . . . . . . . . . . . . 37

5. Experiments 43
5.1. SCAPE YCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9



Contents

5.2. SCAPE 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3. SCAPE YCB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4. YCB-Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6. Conclusion 61

A. SCAPE YCB ADD(S)-AUC 63

10



1. Introduction

Object pose estimation is essential for autonomous robots to be able to interact with their
environment. It is an important task in many real-world applications, such as augmented
reality, autonomous driving and robot grasping. Object pose estimation is the task of
predicting the class of an object and simultaneously estimating the exact pose of the object
in 3D space, consisting of the rotation and position of the object. 6D Pose Estimation has
been proven to be a challenging problem due to sensor noise, varying lighting conditions
and occlusions in the scene [35, 17, 18, 3, 26]. The recent advances in deep learning, motivate
several works to tackle this problem using convolution neural networks (CNNs) on RGB
images. Still, many challenges remain until 6D Pose Estimation can be used in tasks like
robot grasping. A big challenge is the loss of geometry information caused by the perspective
projection, limiting the performance of methods that solely rely on RGB images. In addition,
the use of ever larger neural networks with ever rising complexity calls for ever larger datasets
to train these large networks. But the generation of datasets is expensive and especially
time-consuming to label. Inexpensive RGB-D cameras provide extra depth information to
help with the problem of lacking geometry information in RGB images, and photorealistic
synthetic datasets, which are inexpensive to generate, can be used for large-scale training.

Most current approaches estimate the poses of objects in the scene using only a single input
RGB/RGB-D image. Yet, in practice, scenes are composed of many objects and multiple images
of the scene are often available, obtained by a single moving camera or in a multi-camera
setup. Using only a single image is fine in simple scenes with only a few objects. But if there
are more objects, it becomes harder to estimate the poses of all objects present, because it
is much more likely that an object is partially or completely occluded by another object.
Utilizing multiple views can help to observe all objects in the scene with fewer occlusions.
However, this approach is rarely examined in current papers.

In this thesis, we address this open research problem and develop an approach that combines
information from multiple views and predicts 6D pose estimates. But even with multiple
viewpoints, 6D Pose Estimation remains a challenging problem. For competitive results, we
leverage a state-of-the-art single-view approach for 6D Pose Estimation and extend it to a
novel multi-view method, which can handle extremely complex scenes with many severe
occlusions.
We also examine the estimation of symmetric objects, which have long been considered more
challenging to estimate because of their ambiguity in their pose. For this we first examine
where the current state-of-the-art model struggles when predicting symmetric objects, to
then introduce a symmetry-aware training which aims to solve the identified problems.

Because multi-view has not been tackled widely in literature, there do not exist suitable
public multi-view datasets to train and evaluate a multi-view approach. Therefore, we utilize
three synthetic datasets developed by Bosch to train and evaluate our method. We compare
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Chapter 1. Introduction

our method against the state-of-the-art single-view network on each dataset individually.
Additionally, we compare against an older multi-view method that also fuses information
from multiple views. Finally, we compare against a multi-stage approach, which can be
trained on single-view and evaluated on multi-view, on a public dataset that supports
multi-view for limited sequences.
We evaluate our symmetry-aware training separately using a synthetic dataset and one
public real dataset, comparing against the current state-of-the-art for 6D Pose Estimation.

Our contributions are as follows:

• We propose a novel multi-view architecture for 6D Pose Estimation based on an existing
single-view 6D Pose Estimation method that outperforms the single-view method and
all prior works.

• We introduce a symmetry-aware training method that improves the 6D Pose Estimation
of symmetric objects without changing the inference architecture.

• We demonstrate the benefits of our multi-view architecture and symmetry-aware
training using a extensive evaluation on multiple datasets.

The rest of this thesis is structured as follows. In chapter 2 we discuss the theoretical
background for 6D Pose Estimation, including the metrics used in this thesis to evaluate a
6D Pose Estimation method. We also introduce advanced algorithms that are relevant for
the related work and our network implementation. In chapter 3 we give an overview of the
field of 6D Pose Estimation and highlight especially relevant works to this thesis. In chapter
4 we outline the datasets that we use in this thesis, introduce the FFB6D network which is
the basis of this thesis and detail our multi-view and symmetry extensions. In chapter 5 we
present our result for our multi-view and symmetry extension on the three synthetic datasets
as well as on one real dataset that is publicly available. Finally, in chapter 6 we summarize
this thesis and our results and outline future research directions that we find relevant.
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2. Theoretical Background

2.1. 6D Pose Estimation

6D Pose Estimation or 6DoF (6 Degrees of Freedom) Pose Estimation describes the process
of finding the exact posture or pose of one or more objects in 3D. The pose is composed
of the object’s location t and the object’s orientation R. More specifically, the position is
described by a translation vector consisting of three coordinates x, y,z ∈ R, and the orientation
is represented by the three rotational angles φ,ψ,θ ∈ R. These angles are also commonly
known as roll, pitch and yaw. In total, this makes six parameters or six Degrees of Freedom, to
describe the pose of an object exactly, hence 6D Pose or 6DoF Pose Estimation. However, in
3D, rotations are not commutative, so other alternative representations are often used that
use slightly more parameters.

The pose is always expressed relative to some reference frame, often either a global coordinate
system or the coordinate system of the camera which is observing the object. In Fig. 2.1 the
pose of the drill and the other objects are estimated relative to the observing camera. Complex

Figure 2.1.: The goal of 6D Pose Estimation is to find the translation t and rotation R from
the object coordinate frame O to the camera coordinate frame C [10].

scenes where multiple objects are present are especially difficult for 6D Pose Estimation
methods because larger objects can occlude smaller objects from the camera view. The pose
of an object that is heavily occluded is more difficult to estimate because parts of the objects
that specify the pose of the object cannot be observed.

2.2. 6D Pose Definition

The 6D Pose can be described in many different forms. Ideally, only using the three parameters
for the translation and three parameters for the rotation of the object, as specified in Sec. 2.1.
However, because rotations are not commutative in 3D, other representations for the rotation
are chosen. The translation, however, can be easily described by three parameters in 3D. The
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Chapter 2. Theoretical Background

most common form is a 3D vector to describe the position of the object relative to the camera
or global coordinate system.

t =


x
y
z

 ∈ R3 (2.1)

For the rotation, on the other hand, there exist multiple different ways that can be used
to describe the same rotation in 3D. Some of the most commonly used representations are
Rotation Matrices, Axis-angle representations, or Quaternions. In 6D Pose Estimation, the most
common representations are either Rotation Matrices because of their intuitive representation
or Quaternions because of their compact representation.

2.2.1. Quaternions

Quaternions use four parameters to express a 3D rotation. They are the most compact form to
describe an unambiguous rotation in 3D. When predicting the 6D pose directly, they are often
used because only four parameters have to be estimated. Another advantage of quaternions
is that they do not require much storage space compared to other representations, as only
four parameters have to be stored. A big disadvantage of quaternions is that they are not very
intuitive. To express a 3D rotation as a quaternion, Euler’s rotation theorem is used, which
says that any rotation or sequence of rotations of an object or coordinate system about a fixed
point is equivalent to a single rotation by an angle θ about a fixed axis a that runs through
the fixed point. The four parameters can be used to express the corresponding rotation in a
3D position vector that represents the center of the rotation (see Eq. 2.2).

q =


qw

qx

qy

qz

 ∈ R4 (2.2)

Here the angle θ can be recovered by Eq. 2.3 and the rotation axis a can be recovered by Eq.
2.4.

θ = 2atan2
(√

(q2
x + q2

y + q2
z),qw

)
(2.3)

a = (ax,ay,az) =
1√

(q2
x + q2

y + q2
z)


qx

qy

qz

 (2.4)

2.2.2. Rotation Matrix

A 3×3 rotation matrix is a more intuitive way to express a 3D rotation. However, it is not
as compact as quaternions. To express the same 3D rotation, nine parameters are required
when using a rotation matrix. However, the construction of such a rotation matrix is fairly
simple when having access to three rotational angles φ,ψ,θ as can be seen in Eq. 2.5.
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2.3. Symmetry

R = RθRψRφ =

yaw
cosθ −sinθ 0
sinθ cosθ 0

0 0 1


pitch

cosψ 0 sinψ
0 1 0

−sinψ 0 cosψ


roll

1 0 0
0 cosφ −sinφ
0 sinφ cosφ

 (2.5)

=


cosθcosψ cosθsinψsinφ− sinθcosφ cosθsinψcosφ+ sinθsinφ
sinθcosψ sinθsinψsinφ+ cosθcosφ sinθsinψcosφ− cosθsinφ
−sinψ cosψsinφ cosψcosφ


The inverse formulation of how to how to recover the rotational angles φ,ψ,θ from an
arbitrary rotation matrix R is shown in Eq. 2.6.

R =


r12 r12 r13

r22 r22 r23

r32 r32 r33


φ = atan2(r32,r33)

ψ = atan2
(
−r31,

√
(r2

32 + r2
33)

)
(2.6)

θ = atan2(r21,r11)

2.2.3. Transformation Matrix

It is also possible to interpret the pose of the object, defined by a rotation and translation, as
a coordinate transformation between the object coordinate system O and the camera/world
coordinate system C (see Fig. 2.1). This coordinate transformation can be expressed by a
transformation matrix T = (R|t) which combines the rotation matrix R and the translation
vector t into a 3×4 matrix. To transform a point Op = (px,py,pz,1) on the object mesh defined
in the object coordinate system O to the camera coordinate system C, the point can be
transformed by the known pose expressed as the transformation matrix CTO.

Cp =C TO ·
O p (2.7)

These transformations can also be concatenated to not only transform a point Op defined
in the object coordinate system O to the camera coordinate system C but also the world
coordinate system W. For this, the transformation matrix has to be extended by a

[
0 0 0 1

]
row to keep the same vector dimensions.

T =

[
R t
0 1

]
(2.8)

Using the known transformation between the world coordinate system and the camera
coordinate system WTC gives the point in world coordinates.

Wp =W TC ·
C TO ·

O p (2.9)

2.3. Symmetry

A geometric object is called symmetric if, after a transformation, the object is indistinguishable
from the object before the transformation. Symmetry is a big challenge in 6D Pose Estimation,
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Chapter 2. Theoretical Background

because a symmetric object has multiple or sometimes infinite poses that describe the same
object configuration because it has a symmetry. Symmetric objects therefore have to be
considered with extra care in 6D Pose Estimation.

The most common symmetries in geometry and also the most relevant symmetries in 6D
Pose Estimation are reflectional symmetries and rotational symmetries.

2.3.1. Reflectional Symmetry

Reflectional symmetry or mirror symmetry exists if there is a line in 2D or a plane in 3D that
passes through the object, which divides the object into two pieces that are mirror images of
each other. For instance, the big letter A has one reflectional symmetry, which goes through
the center of the letter A in a vertical manner.

2.3.2. Rotational Symmetry

A rotational symmetry exists if an object can be rotated around a fixed point in 2D or a line
in 3D without changing the overall shape. The symmetry can be either continuous/infinite or
discrete to the nth order. A circle, for example, is continuously symmetric around its center
point, while a square is only discretely symmetric with order n = 4 around its center point
when the rotation is a multiple of 360/4 = 90 degrees.

2.4. Metrics

This section introduces various metrics which are commonly used to evaluate and compare
6D Pose Estimation methods. These metrics were first introduced by Hinterstoißer et al. [15]
and later extended by PoseCNN [35] and DenseFusion [31].

2.4.1. Average Distance

The Average Distance (ADD) [15] is the most common metric to evaluate the precision of
the 6D Pose Estimation methods. It measures how well the object mesh projected by the
predicted pose is aligned with object mesh projected by the ground truth pose. To calculate
the alignment, the average distance between the same vertex v projected by the predicted
and ground truth pose is calculated. The formula for the metric is given in Eq. 2.10.

ADD =
1
|V|

∑
v∈V

‖(Rv + t)− (R∗v + t∗)‖2 (2.10)

2.4.2. Average Closest Point Distance

The Average Closest Point Distance (ADD-S) [15] is a variation of the ADD metric. It extends
the ADD metric to symmetric objects. Symmetric objects cannot be express by a single pose
as discussed in Sec. 2.3. The pose is ambiguous along the symmetry axis/plane. Therefore,
the ADD metric may indicate a poor pose estimate because the same vertex is projected by
different poses. However, qualitative inspection shows that the meshes are well aligned.
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2.5. Advanced Network Functions

Therefore, for a fair evaluation, instead of computing the distance between the same vertex
projected by the reference pose and the predicted pose, the distance between the projected
vertex and the closest vertex in the reference projection is computed.

ADD−S =
1
|V|

∑
v1∈V

min
v2∈V
‖(Rv1 + t)− (R∗v2 + t∗)‖2 (2.11)

2.4.3. Average (Closest Point) Distance

The Average (Closest Point) Distance (ADD(S)) [15] is the combination of the two ADD
and ADD-S metrics. The ADD-S metric is slightly more vague because it uses a minimum
formulation. Therefore, to have the most precise formulation possible while still ensuring
the correct evaluation on symmetric objects, the ADD(S) metric defines the ADD-S metric for
pre-defined symmetric objects and the more strict ADD metric for non-symmetric objects.

ADD(S) =

ADD−S if symmetric object

ADD otherwise
(2.12)

2.4.4. Area under the Curve

Instead of reporting the ADD(S) metric directly, PoseCNN [35] has introduced the ADD(S)
Area Under the Curve (AUC) metric to combine multiple measurements m of multiple
predicted scenes M with a varying threshold accuracy for a single object class. For 6D Pose
Estimation, the metric is defined on the integral of the threshold function between 0 meters
and 0.1 meters.

AUC(M) = 10
∫ 0.1

0

 1
|M|

∑
m∈M

1m<x

 (2.13)

2.4.5. Average Distance Precision

The Average Distance Precision (ADD(S)<2cm) metric [31] is another extension of the ADD
metric. It is similar to the ADD(S)-AUC metric. Instead of having a sliding precision threshold,
for ADD(S)<2cm metric the threshold is fixed at 2cm. This is considered the maximum
tolerance for successful robot manipulation tasks. The Eq. 2.14 shows the formulation on
how to calculate this metric.

ADD(S) < 2cm(M) =
1
|M|

∑
m∈M

1m<0.02 (2.14)

2.5. Advanced Network Functions

This section contains a short description of advanced algorithms that are used as pre-
processing and post-processing steps in relevant related works and our pose estimation
network.
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Chapter 2. Theoretical Background

2.5.1. Farthest Point Sampling

Most 6D Pose Estimation methods nowadays do not estimate the 6D pose directly but utilize
tasks like 3D keypoint estimation as an intermediate task to regress the final 6D pose from
the keypoints.

To estimate the 6D pose accurately from 3D keypoints it is important that the keypoints are
well distributed across the object, something that will be further discussed in Sec. 4.2.3. For
this, Peng et al. introduced Farthest Point Sampling (FPS) in their PVNet paper [26]. The
goal of FPS is to obtain 3D keypoints from an object, where the keypoints are evenly spread
across the object’s surface. These farthest point sampled keypoints represent a subset S of all
vertices V of the object’s mesh. The first step is to calculate the center of the object c. In the
next step, the vertex v0 is calculated that is the farthest keypoint from the center c using Eq.
2.15.

v0 = argmax
v∈V

||c−v||2 (2.15)

The keypoint v0 is the first keypoint in S. Additional keypoints vi are added iteratively to S,
by selecting keypoints that maximize the distance to all previously added keypoints in S.

vi = argmax
v∈V

1
|S|

∑
s∈S

||v− s||2 (2.16)

This iterative process is repeated until a desirable amount of keypoints is reached.

2.5.2. Mean Shift Clustering

In combination with 3D keypoint estimation, Mean Shift Clustering is often used to cluster
keypoint proposals. Mean Shift Clustering is an algorithm to find the maxima of a density
function given discrete data X sampled from that function [7]. Here, the discrete data points
are the keypoint proposals generated by the network. The algorithm works by iteratively
moving an initial estimate or seed x towards the denser part of the cluster. The algorithm
works for a single initial point x ∈ X but can be easily parallelized to work with multiple
initial points. To move the current seed point to the denser part of X an offset is computed by
Eq. 2.17.

m(x) =

∑
xi∈N(x) K(xi−x)xi∑

xi∈N(x) K(xi−x)
(2.17)

The offset is weighted by using a kernel function K which is usually a Gaussian Kernel (see Eq.
2.18 and summed over all points in X. The parameter b defines the bandwidth of the kernel.
The smaller this bandwidth, the more focused the kernel, pulling the seed point towards the
center of the cluster. The iterative process terminates when the seed point converges, or a
maximum number of iterations is reached.

K(xi−x) =
1

b
√

2π
exp

(
−

1
2

(
||xi−x||2

b

)2)
(2.18)
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3. Related Work

6D Pose Estimation is a widely explored topic in computer vision. In general, it can be
divided into two categories. Instance-level pose estimation assumes that the target objects
are known a priori, for example, a particular power drill or food item. Category-level pose
estimation assumes the target objects are from specific known categories, but the exact object
models are unknown [29, 32]. Instance-level pose estimation is the dominant problem in
current research for topics such as robot grasping and represents the focus of this master
thesis.

The BOP-Challenge [17] further divides the problem of instance-level pose estimation into
the following sub-problems:
The simplest task is Single instance of a Single object (SiSo) pose estimation, where only the
pose of a single object at the same time has to be estimated. In Single instance of Multiple
objects (SiMo), multiple objects can be present in the scene, but the same object instance is
present only once. Multiple instances of a Single object (MiSo) is the problem where multiple
instances of the same objects are allowed. The most complex task is Multiple instances of
Multiple objects (MiMo), where multiple objects from multiple instances can be present in the
scene at the same time. A variation on MiMo is the Varying number of instances of a varying
number of objects (ViVo) task where the number of objects are known, which simplifies the
evaluation process drastically.

In this master thesis, we focus on the SiMo task as it is the task most commonly tackled task
in current research in the context of robot grasping. In the following chapter, we present
relevant works for instance-level pose estimation that solve the SiMo task.

3.1. Pose Estimation with RGB Data

Early pose estimation methods were dominated by feature-based methods and 3D template
matching approaches. In template matching approaches, a ridged template of the object
is constructed and is moved over the image with a sliding window. At each location, a
similarity score is computed, and the best match is obtained by finding the highest similarity
score [6]. In 6D Pose Estimation, a template is often obtained by rendering the corresponding
3D model of the object. Template-based methods are useful for detecting texture-less objects,
however, they cannot handle occlusions very well.
Feature-based methods, extract local features in the image like Scale Invariant Feature
Transform (SIFT) [24] features on the 3D models, to establish the 2D-3D correspondences to
recover the poses in a Perspective-n-Point (PnP) manner. Feature-based methods are able to
handle occlusions better, however, they require sufficient texture to find local features. The
rise of deep learning has motivated many works to tackle the problem of 6D Pose Estimation
with neural networks, specifically CNNs. One of the first deep learning approaches that
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outperformed classical methods was PoseCNN [35] from Xiang et al. which is a two stage
CNN approach. PoseCNN also introduced the YCB-Video dataset (see Sec. 4.1.1), which is a
high quality 6D Pose Estimation dataset that exceeded previous 6D Pose Estimation datasets
like LINEMOD [16] by multiple orders of magnitude in size. The architecture of PoseCNN

Figure 3.1.: PoseCNN architecture, designed to learn three tasks: Semantic labeling, 3D
translation estimation and 3D rotation estimation [35].

can be seen in Fig. 3.1. The first stage of the network is a multi-layer convolutional neural
network which extracts feature maps with different resolutions from the input image. This
stage is the backbone of the network, the extracted features are shared across all downstream
tasks. The second stage of the network embeds the high-dimensional features generated by
the CNN into low-dimensional task-specific features. Then the network performs semantic
segmentation, 3D translation estimation and 3D rotation regression, to output the 6D poses
of all objects in the scene.

Many works followed PoseCNN that utilized deep learning for 6D Pose Estimation like
DeepIM [22], however the loss of geometry information due to perspective projections limits
the performance of these RGB only methods, which is why current research has moved
beyond RGB only methods.

3.2. Pose Estimation with Depth Data

The development of depth sensors and point cloud representation learning techniques, such
as PointNet [27] and its successor PointNet++ [28], motivate learning tasks such as object
detection or segmentation tasks, only with only depth data, often represented as point clouds.
Point cloud approaches can leverage direct geometric information about the scene, unlike
approaches that use RGB images, where only limited geometry information can be extracted.
However, sparsity and non-texture of point clouds limit the performance of these approaches.
Also, objects with reflective surfaces cannot be captured by depth sensors. Therefore, the
utilization of point cloud only methods for 6D Pose Estimation is rare. Gao et al. proposed
one of the few methods that only utilize point clouds for 6D Pose Estimation. CloudPose
[9] is considered to be the first deep learning approach that performs 6D Pose Estimation
only from point clouds constructed from a depth image. Another work that only uses depth
information for 6D Pose Estimation is the work from Bui et al. [4], who propose a multi-task
framework to combine manifold learning and 3D orientation regression directly from depth
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images to learn view descriptors which can be also applied to either retrieve or regress the
6D pose.

3.3. Pose Estimation with RGB-D Data

Recovering the 6D pose from only images or only point clouds is hard. Both have their
drawbacks. Images provide limited information about geometry in the scene, while point
cloud only methods rely on very sparse data which does not contain any appearance
information.
With the commercially available Kinect depth sensor in 2010, researchers began investigating
6D Pose Estimation using RGB-D images. With the additional depth channel, pose estimation
could combine the advantages of both sensor modalities [14]. The most straightforward
utilization of the two modalities is to first perform the initial pose estimation based on RGB
images and then further refine with depth images, such as via Iterative Closest Point (ICP)
refinement [15, 30].
PointFusion [36] was one of the earliest deep learning methods to fuse deep image features
and point clouds features in the context of autonomous driving. They utilized a PointNet [27]
to process the point cloud and a ResNet [11] to process the images. Based on PointFusion,
Wang et al. developed DenseFusion [31] which was applied in the context of 6D Pose
Estimation using RGB-D images.
Another big milestone model was PVNet [26] by Peng et al. and its successor PVN3D by He et
al. [13]. These works deviated from previous works by not predicting the 6D pose directly but
predicting 3D keypoints from which to regress the final 6D pose, similar to the PnP-methods
using handcrafted features. They argue that methods that predict the 6D pose directly suffer
from the non-linearity of the rotation space, which makes learning and generalizing with
a data-driven deep learning model hard. They prove this by outperforming the previous
works that predict the 6D pose directly by a large margin. The latest work in the line of
models that predict the 6D pose via keypoints is FFB6D [12] by He et al. which stands for
Full Flow Bidirectional Fusion Network for 6D Pose Estimation. It represents the state-of-the-art
for 6D Pose Estimation at the time of writing this thesis. It outperforms previous works like
PVN3D by utilizing an early multi-stage fusion approach between the separate CNN and
PointNet branches, in contrast to the earlier fusion methods like PVN3D and DenseFusion
which fuse depth and image feature later in the network in one layer. More details on the
FFB6D model can be found in the Method chapter of this thesis.

3.4. Pose Estimation with Multi-View Data

So far, only a limited number of works exist that tackle 6D Pose Estimation from multiple
viewpoints. Li et al. were one of the first to tackle multi-view 6D Pose Estimation with
multiple views in A Unified Framework for Multi-View Multi-Class Object Pose Estimation [21].
CosyPose [20] from Labbe et al. is one of the more recent works for multi-view pose estimation,
by utilizing a multi-stage approach. This novel multi-stage architecture (visualized in Fig.
3.2) makes training on single-view scenes possible, while being able to utilize multiple views
during test time. This novelty is possible because the stages are not trained end-to-end. The
first stage estimates 6D pose hypotheses from a single view. This step is learned with a neural
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Figure 3.2.: Full multi-stage architecture of CosyPose [20]. In the first stage, the initial object
candidates are detected in each view separately. In the second stage. the object
candidates are matched across views. In the third stage, all object and camera
poses are refined to minimize the reprojection error.

architecture. In the following step, the individual 6D object pose hypotheses are matched
across different input images to get a globally consistent scene representation. In the final
step, the camera viewpoints and 6D object poses are estimated jointly by minimizing the
multi-view reprojection error with bundle adjustment. However, this approach utilizes only
RGB information and assumes unknown camera positions, which makes this work different
from the approach we are pursuing in this master thesis. Nevertheless, CosyPose represents,
at the time of writing this thesis, the state-of-the-art for multi-view pose estimation on a
publicly available dataset. In contrast to CosyPose, we are pursuing an approach utilizing
RGB-D data and known camera positions, which should help increase the accuracy of such
a multi-view 6D Pose Estimation method. A more similar approach to our proposal is a
multi-view variation of PVN3D developed in [8] (see Fig. 3.3). This work improved upon the
PVN3D work by He et al., by fusing the depth information of the multiple RGB-D cameras
to a global point cloud and processing the RGB images in a batch-wise manner to finally
fuse the features generated by the global point cloud and the batched images to finally
predict the 6D pose proposal of objects in the scene. Unlike CosyPose, this approach assumes

Figure 3.3.: Overview of the multi-view adaption of PVN3D [8]. The images from the multiple
views are processed in the CNN branch. The point clouds are pre-transformed
into a global point cloud to be processed by the PointNet++ branch. After the
separate processing of both modalities, the features are fused densely to predict
instance segmentations and 3D keypoints.
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known camera viewpoints to fuse the depth information of the multiple RGB-D cameras. A
drawback of this work is the late dense fusion of RGB and depth. Nevertheless, this approach
shows promising results on an internal synthetic dataset. He et al. show in their follow-up
work to PVN3D called FFB6D that an early fusion of appearance and depth is beneficial for
the final 6D pose proposal. This early fusion is very challenging to adapted to multi-view, but
promises further improvements over the multi-view PVN3D model, in line to improvements
shown in the single-view case.
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Our goal is to make 6D Pose Estimation approaches more effective in complex scenes and
more accurate for symmetric objects. For this we look into the pose estimation from multiple
views while also explicitly handling object symmetries. This problem of estimating the 6D
object poses from multiple views has not been widely explored yet. The most relevant work
to address this problem is CosyPose [20] (see Sec. 3.4). CosyPose combines a deep learning
object detection pipeline with classical multi-view reconstruction techniques to estimate
the pose of the objects and cameras jointly in a multi-step approach. This approach has the
advantage of being able to be trained on single-view scenes, but then at test time, be able to
utilize further frames to make more accurate predictions. The advantage comes at the cost
of having to solve a very hard problem of joint pose estimation of camera and object poses
without deep learning.

In contrast to CosyPose, we want to incorporate the multi-view fusion into an end-to-end
trainable model. We decide to exploit the fact that pose estimation for object manipulation
is usually explored in a stationary and highly controlled setup. Therefore, it is reasonable
to assume to have multiple cameras observing the scene from ideal observation points
with known relative positions to each other. This offers the biggest gains of a multi-view
setup compared to a single-view setup and makes the fusion of the multiple views easy
because of the known relative camera positions. We decide to utilize three to five cameras,
as this allows us to cover most of the viewing angles and observe the whole scene from
360 degrees. We choose to adapt the current state-of-the-art single-view 6D Pose Estimation
model called FFB6D [12] to multiple views to assure improvements over the state-of-the-art
in pose estimation.

As deep learning methods require large amounts of data to learn, it is common for 6D Pose
Estimation methods to utilize a mixture of real and synthetic training data. For multi-view
6D Pose Estimation, however, there do not exist suitable datasets of real recordings that offer
multiple views of the same scene that are distinct enough from one another. We therefore
will introduce in the following sections the adaption of the YCB-Video dataset [35] to a real
multi-view dataset, as first introduced in CosyPose. We will also introduce the synthetic only
datasets SCAPE YCB, SCAPE 2 and SCAPE YCB2 which first appeared in [8]. Furthermore,
we provide a detailed insight into the original FFB6D model and our novel extension of its
multi-view variant. Further, we discuss our addition to make the predictions of FFB6D more
robust towards symmetric objects by handling symmetries explicitly during training.

The multi-view extension and the symmetry extension are independent of each other and
are therefore also discussed separately in this thesis.
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4.1. Datasets

4.1.1. YCB-Video

The YCB-Video dataset is one of the most frequently used benchmark in 6D Pose Estimation.
It was first introduced by Xiang et al. in the paper PoseCNN [35]. The dataset offers a wide
variety of domains, containing 21 objects such as food items (food cans, fruits), kitchen
items (bowl, mug) and tools (marker, power drill). The objects originate from the Yale-CMU-
Berkeley (YCB) object and model set [5]. Some objects have rich texture, others are almost
uncolored surfaces, and some have natural symmetries, which are challenging for 6D Pose
Estimation and require additional processing during training and testing.

Figure 4.1.: The 21 objects of the YCB-Video dataset [5]. In the SCAPE YCB dataset we reuse
the following non-symmetric objects: master chef can, mustard bottle banana, tomato
soup can, sugar box, tuna fish can, pudding box, gelatin box, potted meat can, cracker
box and power drill

The dataset contains 92 RGB-D video sequences. Each sequence shows a static scene with
a subset of the 21 objects (see Fig. 4.1). In total there are 133,827 frames which consist of
an RGB image, a depth map, as well as ground truth information like a segmentation map
and the 6D pose of the objects in relation to the camera position (see Fig. 4.2). Additionally,
the camera pose is provided in a global coordinate system. The official train/test split uses
80 video sequences for training. The testing is done on predefined keyframes chosen from
the remaining 12 video sequences. In addition, to the real scenes, there are 80,000 synthetic
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non-sequential frames that can be used for training. For the synthetic frames, a subset of
objects is randomly placed in the image in front of a uniform background.

(a) RGB Image (b) Depth Map (c) Segmentation Map

Figure 4.2.: In the YCB-Video dataset, each training/test sample consists of an RGB image (a),
a depth map (b) and a ground truth segmentation map (c). Additionally, the 6D
poses of the objectss in the scene and the camera poses are provided.

For its multi-view testing, CosyPose utilizes a random group of the keyframes from each
test sequence. We implement the same grouping algorithm with the same seed to achieve
comparable results. We not only do this for the test keyframes, but also the frames in
the training sequences to use them for training. Unfortunately, this is not possible for the
non-sequential synthetic frames. This drastically reduces the training data, which is not a
problem for CosyPose as it can be trained on single-view, but it is a challenge for our method
because it is trained and tested with multi-view frames. In Sec. 5.4 we discuss how we can
solve this problem.

4.1.2. SCAPE YCB

The Sequential Clustered Annotated Pose Estimation (SCAPE) dataset is a continuously
improving synthetic dataset, rendered in a photorealistic manner, developed by the Bosch
Group. The first variation by the name of SCAPE appeared in [2]. As the name suggests,
this dataset was designed for sequential processing of frames for 6D Pose Estimation. But
with the introduction of SCAPE YCB in [8] the focus changed to a static setup, with multiple
independent cameras, which is the same use case as this thesis. The dataset includes 8333
scenes with three views each, resulting in 24,999 frames. Each scene consists of eleven objects
from the YCB object set [5], hence the name SCAPE YCB. The cameras are pointing towards
the center of the scene, they are equally distributed in a circle and share the same distance
to the scene center. The objects are placed randomly in the scene by spawning them above
a table surface in a random pose and then simulating their fall onto the surface. After the
objects have reached a resting position, the scene is captured by the surrounding cameras. The
table surface is randomly sampled from a collection of Blender materials and the background
is generated using a randomly selected high dynamic range image. Lastly, the lighting is
slightly randomized in intensity and colors, resulting in different realistic shadows and
reflections. By choosing not a flat table surface but a slightly concave surface, the objects tend
to gather in the center, which results in the objects occluding each other. This means that it
is no longer possible to even see all objects from a single view (see Fig. 4.3). Additionally,
a sub-variation of the SCAPE YCB dataset exists where the scenes are rendered from not
perfectly placed cameras. This is highly relevant for this work, as one assumption of the
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method introduced in this thesis is that the relative camera positions are to be known to
fuse the information of all cameras. It therefore can give valuable insight as to how well the
introduced approach can generalize to incorrect camera placements.

(a) Available Views

(b) Available Representations per Image

Figure 4.3.: SCAPE YCB offers three views per scene with additional depth and segmentation
maps. The scenes are rendered in a photorealistic manner, showing cluttered
scenes with many occlusions.

4.1.3. SCAPE 2

The SCAPE 2 dataset is another variation on the original SCAPE dataset. It includes the same
number of scenes and also offers three views for each scene. The cameras and objects are
placed in a similar manner, but the number and types of objects are different. Three objects
are chosen from the T-LESS dataset [18] and three additional objects are selected from the
Bosch internal AMIRA project [33] (see Fig. 4.4). In contrast to the SCAPE YCB dataset where

Figure 4.4.: The six objects contained in the SCAPE 2 dataset. The top three objects are taken
from the T-LESS dataset [18], while the bottom three objects are selected from the
Bosch internal AMIRA project [33].
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none of the objects are symmetric, the selected objects in the SCAPE 2 dataset do all have at
least one symmetry except for the T-LESS_18 object. However, because this dataset has fewer
objects, the number of occlusions is lower as the SCAPE YCB variant (but still higher than in
the YCB-Video sequences), which makes this dataset more suitable to test improvements
made in the handling of object symmetries.

Figure 4.5.: The SCAPE 2 dataset offers three views per scene. The scenes are rendered
in a photorealistic manner, showing many symmetric objects with only a few
occlusions.

4.1.4. SCAPE YCB2

The SCAPE YCB2 dataset is a continuous development of the SCAPE YCB dataset. It consists
of the same scenes, but in contrast to the SCAPE YCB dataset, the SCAPE YCB2 dataset
offers up to four camera views from around the scene, with an additional top-down view.
This makes the SCAPE YCB2 dataset ideal for evaluating the improvements of additional

Figure 4.6.: The SCAPE YCB2 dataset offers four views per scene with an additional top-down
view. The rendered scenes are identical to the SCAPE YCB dataset, showing
photorealistic scenes with many occlusions.

cameras and how many are needed for optimal results. Furthermore, the SCAPE YCB2
dataset is slightly harder than the SCAPE YCB dataset because the camera poses change in
each scene. The camera poses are chosen randomly for each scene, with the constraint that
each quadrant in the scene contains one camera pointing towards the scene center to ensure
that the scene is observed by greatly varying viewing angles. This can give great insight
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whether the multi-view model overfits to specific camera poses or generalizes the fusions of
multiple views beyond the preset camera poses.

4.2. Proposed Network

4.2.1. FFB6D

The FFB6D [12] network is an advancement on the PVN3D [13] network, both of which
were developed by Yisheng He et al.. It represents the state-of-the-art approach for 6D
Pose Estimation at the time of writing this thesis. It outperforms the previous methods by
bidirectionally fusing image and depth information early in the network. Similarly to PVN3D
and in contrast to methods such as PoseCNN [35] or CosyPose [20], it does not directly
infer the 6D pose, but predicts multiple 3D keypoints in the scene that are then used in a
post-processing step to infer the final 6D poses via a least-squares-fitting [1]. It is therefore the
starting point for our multi-view extension and will be discussed in detail in the following
paragraphs.

Like most other 6D Pose Estimation methods for robot grasping, FFB6D makes a couple of
assumptions for pose estimation. One being that the object models of the objects in the scene
must be known a priori and that maximally a single object of the same type must be present
in the scene.

(a) FFB6D utilizes a CNN to extract high-dimensional features from the RGB image and a PCN to extract high-
dimensional features from the depth information represented as a point cloud. The two separate branches are
connected by bidirectional fusion modules to exchange high-dimensional geometry and appearance features.
Finally, the features of both branches are concatenated and fed into an instance semantic segmentation and a
3D keypoint voting module. At test time, the 6D pose is recovered with a least-squares-fitting.

(b) Pixel-to-Point Fusion (c) Point-to-Pixel Fusion

Figure 4.7.: Overview of FFB6D [12]
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Input
The FFB6D network is designed to handle aligned RGB-D data. The RGB-D frame is split into
the image and depth map, which are processed independently through the network. The
image can be directly processed by the network, however the depth map is pre-processed
before parsing it into the network. Using the camera intrinsics, it is possible to convert the
depth map into a point cloud, which is then processed by the network. But to reduce the
computational complexity, a fixed number of points is sampled before inputting the point
cloud into the network. Additionally, points that are out of range for the sensor are also
removed in this step. In addition to the 3D point location, each point is also encoded with
the surface normals at these points, which can be also computed with the depth map and the
camera intrinsics.

Labels
Each training sample contains the required labels to train the network. For the keypoint
estimation, eight ground truth 3D keypoints per object are provided in camera coordinates.
Experiments by He et al. have shown that eight keypoints work best for pose estimation, but
more keypoints are also possible. The keypoints are selected using a farthest point sampling
described in Sec. 2.5.1 of pre-computed SIFT keypoints on the known 3D object model. They
are then projected into the camera coordinates by the ground truth 6D pose. Additionally, to
the ground truth keypoints, a segmentation map of the scene is required. Lastly, the center
position of each object is needed for training. The centers are computed by finding the mean
of all corner points of the known 3D object models.

Architecture
The FFB6D architecture can be split into three parts. The first part is the feature extraction
part. Here lies the novelty of FFB6D. The following 3D keypoint and semantic segmentation
parts are known from PVN3D, as well as the final least-squares-fitting task to regress the 6D
pose.
The feature extraction part can be further divided into two branches. The CNN branch to
extract appearance features from the RGB image with a ResNet-34 [11] encoder and PSPNet
[38] decoder architecture, and the point cloud branch to extract geometric features from the
point cloud with a RandLA-Net [19]. The novelty lies in the fusion modules that connect
both branches bidirectionally to exchange geometric and appearance information. In this
way, the two branches can utilize the extra appearance/geometric information from the
other branch to facilitate their own representation learning. The extracted features of both
branches are then concatenated and fed into the instance semantic segmentation and the 3D
keypoint module to obtain the per-object 3D keypoints. Finally, a least-squares-fitting with
the estimated keypoints and the known object model points is applied to estimate the 6D
poses.

Fusion
The novel fusion modules consist of two different fusion blocks. One fuses pixel information
with point information from image features to point cloud features (see Fig. 4.7b). The other
fuses the point information from the point cloud features with the image features of the CNN
branch (see Fig. 4.7c).
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To achieve this fusion, the fact that the RGB-D image is well-aligned is exploited. Rather
than concatenating a global feature from the CNN branch to the Point-Cloud-Network
(PCN) branch, which loses valuable information of the multiple objects in the scene, relevant
features are fused densely with the other branch. For this, it is possible to use the 3D point
cloud as a bridge to connect the pixel-wise and point-wise features.
To achieve this, the depth of each pixel is lifted with the intrinsic matrix to its corresponding
3D point to obtain an XYZ map aligned with the RGB map. Then for the pixel-to-point fusion,
for each point feature with its 3D coordinate, the Kr2p nearest point can be found in the XYZ
map to gather their corresponding features from the RGB feature map. Then a max-pooling
followed by a shared MLP is applied to these features to squeeze the incoming feature to the
same channel size as the point cloud features. A shared MLP is then utilized to generate the
fused feature. This process is visualized in Fig. 4.7b and shown in Eq. 4.1 and Eq. 4.2. Here
Fri is the ith nearest pixel of the RGB feature and Fr2p the incoming appearance feature. The
concatenation of the point feature Fpoint and the incoming appearance feature Fr2p is denoted
by the ⊕ operator.

Fr2p = MLP(
Kr2p

max
i=1

Fri) (4.1)

F f usedp = MLP(Fpoint⊕Fr2p) (4.2)

The point-to-pixel fusion follows a similar manner. The lifted XYZ map is again used to find,
for each pixel with its XYZ coordinate, the Kr2p nearest neighboring points from the point
cloud which are used to gather the corresponding point features. The point features are then
squeezed by a shared MLP followed by a max-pooling operation to the same channel size
as the RGB features to concatenate them to the RGB features. Finally, a shared MLP is used
to generate the fused feature. The point-to-pixel fusion process is visualized in Fig. 4.7c)
and shown in Eq. 4.1 and Eq. 4.2. Here Fp j is the jth nearest point of the point cloud feature
and Fp2r the incoming geometry feature. The concatenation of the point feature Frgb and the
incoming geometry feature Fp2r is denoted by the ⊕ operator.

Fp2r = MLP(
Kp2r

max
j=1

Fp j) (4.3)

F f usedr = MLP(Frgb⊕Fp2r) (4.4)

Semantic Instance Segmentation
Following the concatenation of the point and image features, one of the target tasks is
semantic instance segmentation. The instance segmentation module is directly borrowed
from the predecessor PVN3D. It consists of a semantic segmentation head and a center point
voting module, where the first predicts per-point semantic labels and the second learns the
per-point offset to the object centers ∆xi to distinguish different instances.

To optimize the segmentation task, a Focal Loss [23] is used. The Focal Loss is a variation on
the classical cross-entropy loss. It adds a class balancing term αi like in the balanced cross
entropy loss, as well as a modulating factor (1− qi)γ, which scales the loss depending on the
confidence of prediction. Meaning, easy examples with a high confidence will result in a
smaller loss, compared to hard examples with low confidence. The hyperparameter γ scales
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this effect. The vector ci represents the predicted confidence for the ith point belonging to
each class, and li is the one-hot representation of the ground truth class label.

Lsemantic = −α(1−qi)γ log(qi), where qi = ci · li (4.5)

The center offsets ∆xi are optimized with a mean L1-norm of the difference between the
predicted center offset ∆xi and the ground truth offset ∆x∗i if the point pi of the offset ∆xi is
part of the instance I using the indicator function I. N represents the number of points in the
point cloud.

Lcenter =
1
N

N∑
i=1

||∆xi−∆x∗i ||I(pi ∈ I) (4.6)

3D Keypoint Estimation
The 3D keypoint estimation module is also borrowed from the predecessor PVN3D. It is
very similar to the center offset module but instead of learning the per-point center offset, a
per-point offset o f j

i from the ith point cloud point to the jth keypoint is learned, where N is
the number of points in the point cloud and M is the number of keypoints.

Lkeypoints =
1
N

N∑
i=1

M∑
j=1

||o f j
i − o f j∗

i ||I(pi ∈ I) (4.7)

Loss
At training time, the whole network is simultaneously trained with backpropagation via
a multi-task loss which is defined by the weighted sum of all previously discussed task
specific losses. The weights λ1,λ2,λ3 are hyperparameters and must be tuned manually (in
our implementation we use λ1 = 2,λ2 = 1,λ3 = 1 similar to the public implementation of
FFB6D).

Lmulti−task = λ1Lkeypoint +λ2Lsemantic +λ3Lcenter (4.8)

Pose Estimation
At test time, some post-processing steps are needed for the outputs of the semantic instance
segmentation module and 3D keypoint estimation module. First, the offsets are added to
the original point coordinates in order to obtain the actual keypoint proposals. This step
is necessary because rather than learning the keypoints itself, the offsets to the keypoints
are learned. This is because Peng et al. showed in their PVNet paper [26] that learning the
keypoints via offsets combined with voting and clustering, rather than regressing the sparse
keypoint locations directly, is more robust to occlusions and truncations. FFB6D follows
this recommendation and clusters the keypoints via Mean Shift Clustering (see Sec. 2.5.2).
The final 6D pose is estimated using a least-squares-fitting. Here the ground truth object
keypoints p∗i are available in the object coordinate system and the estimated keypoints pi are
predicted in the camera coordinate system in which the 6D pose should be estimated. The
least-squares-fitting algorithm calculates the pose parameters R and t by minimizing the
squared loss shown in Eq. 4.9.
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Figure 4.8.: Keypoint Voting and least-squares-fitting as introduced by PVN3D [13], using an
RGB-D image (a). For each point in the point cloud, an offset to each keypoint is
predicted (b). Using voting and mean shift clustering these proposals are refined
into a final keypoint prediction (c). The final 3D keypoints (d) are matched to
the keypoints of the known 3D model (e) to estimate the final 6D pose (f) via a
least-squares-fitting.

Lls f =

N∑
i=1

||p∗i − (R ·pi + t)||22 (4.9)

The entire pose estimation process is visualized in Fig. 4.8.

4.2.2. Multi-View FFB6D

To leverage the advances that FFB6D [12] has made, we decide to keep most of the architecture
when extending it to multiple views. The primary difference is in the feature extraction part
of the network, fully keeping the semantic instance segmentation module and 3D keypoint
estimation module.
The first adaption we make is to add another preprocessing step from the depth map to the
point cloud that is injected into the network. For a single view, there is only one point cloud
generated from a single depth image. But in our multi-view setup, there are n depth maps
coming from n RGB-D cameras. Each depth map is converted into a point cloud in its own
camera coordinate system. Instead of passing the point clouds individually to the network,
we utilize the fact of known relative camera positions and transform the point clouds into a
shared global coordinate system.

To transform the point clouds of each camera into a shared global coordinate system, we
have to know the camera poses in a shared reference frame or world coordinate system. To
transform a point in the point cloud from one camera coordinate system to the other, we can
use a similar transformation detailed in Sec. 2.2.3.
But instead of transforming all point clouds into the world coordinate system, we decided
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to transform all point clouds into the first camera coordinate system. This way, the final
predicted 6D object poses will be predicted in the first camera coordinate system instead of
the world coordinate system, similar to the standard single-view pose estimation results.

To transform the point cloud of the ith camera coordinate system into the first camera
coordinate system, we first transform the points into the world coordinate system as
described in equation 2.9. Then we use the transformation from world coordinates to the first
camera coordinates to finally express the point cloud from the ith camera in the coordinate
system of the first camera.

C1p =C1 TW ·
W TCi ·

Ci p = (WTC1)−1
·
W TCi ·

Ci p (4.10)

We know the point clouds C1p and Cip in their respective camera coordinate systems and
we know the camera poses C1TW and CiTW in world coordinates, but we do not know the
transformation C1TW from the first camera coordinate system to the world coordinate system.
However, this is simply the inverse (WTC1)−1 of the camera pose of the first camera in world
coordinates.

Figure 4.9.: Transformation process to fuse the separate point clouds of each camera into one
global point cloud using the known relative camera positions.

There are multiple advantages for this step. For once, after the fusion of the point clouds,
the global point cloud can be passed into the network without any actual network changes
to the RandLA-Net [19]. Another advantage is that this step perfectly fuses the geometry
information together, without the network having to learn the geometry relation between
the different views.

The second adaption we introduce is focused on the image branch of the network. Unlike
with the point cloud, we decided against warping all images into one single image, as the
images are recorded from drastically different viewing angles and positions. Because the
fusion of the multiple viewpoints is already optimally performed by the point cloud branch,
we decide to process the images individually by a separate ResNet-34 [11] encoder and
PSPNet [38] decoder for each view. To do this efficiently and not grow the number of weights,
the separate processing of the n input images is done in a batch-wise manner.

For the single-view case, the input of the ResNet is of shape [b, c, w, h] with b being the
batch dimension, c being the number of channels (three for RGB) and w,h being the width
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and height of the image. For multi-view our input tensor grows to the shape [b, n, c, w, h],
where n is the number of views. To now process the images independently in a batch-wise
manner we flatten the input tensor to the shape of [b × n, c, w, h]. This way, the images
are independently processed by the same CNN branch. This is similar to how the network
processes multiple samples of the same batch independently of each other. The advantages of
this design are that the number of weights for the CNN branch do not change, and the data
is automatically processed in parallel when using a deep learning library such as PyTorch
[25]. The output of the PSPNet decoder is consequently of the shape [b × n, f, w, h] where f is
the feature dimension of the output. This is then can be easily reshaped to tensor of shape [b,
n, f, w, h].

(a) Multi-View adaptation of FFB6D network for n = 2 views

(b) Multi-View Pixel-to-Point Fusion for n = 2 views (c) Multi-View Point-to-Pixel Fusion for n = 2 views

Figure 4.10.: Overview of Multi-View FFB6D. The network differs from its single-view
counterpart in three ways. The first is the fused point cloud of all views. The
second is the batch-wise processing of images for each camera. The third change
are the adapted fusion modules for Pixel-to-Point (b) and Point-to-Pixel (c)
fusion, to support multiple views.

In addition to the changes in the CNN and PCN branches, the fusion between both branches
has to be adapted as well to fuse the correct features of the correct views.
This task is not trivial anymore because not all point features and all image features belong
to the same view. Nevertheless, we perform the same underlying process of fusing the
features via the nearest-neighbor features. However, the Kr2p nearest-neighbors and Kp2r
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nearest-neighbors have to be calculated independently for each view. This is challenging as
we do not know which point feature belongs to which view but because of the batch-wise
processing of the image features we can find point features that are nearest to the image
features for which we know the view. Utilizing a few reshape and broadcasting operations,
we implement the same batch-wise processing and concatenating for the fusion of incoming
and outgoing image and point cloud features. The process is visualized in Fig. 4.10 for two
views.

4.2.3. FFB6D Symmetry Extension

Problem investigation
Generally, 6D Pose Estimation methods perform worse for symmetric objects compared
to other non-symmetric objects. This is true for FFB6D [12], but also many other works.
To identify the problem, it is insightful to look at the keypoint predictions, which are an
essential step in the pose estimation procedure. We have visualized the keypoint predictions
of the single-view FFB6D model in Fig. 4.11 for an exemplary scene from the SCAPE 2
dataset, which has many symmetric objects. All the objects in the scene shown in Fig. 4.11

Figure 4.11.: Keypoint proposals and final predictions of the standard FFB6D network on a
sample from the SCAPE 2 test set. Predicted keypoints are colored in white. The
ground truth keypoints are colored in black. The keypoint proposals for each
object are in a separate color.

are symmetric, except for the T-Less_18 object. The T-Less_08 object has one reflectional
symmetry, and the keypoint predictions seem to align well with the ground truth keypoints.
The keypoint predictions for the BrakingUnit also appear to be accurate, despite the fact that
it also has two reflectional symmetries.
But for the T-Less_27, DriveShaft and Tool.Cap objects, which all have a rotational symmetry,
the keypoint predictions are far away from their ground truth keypoints. It can be observed
that the keypoint proposals and final keypoint predictions cluster on the symmetric axis of the
object. This seems to be the reason for poor 6D pose estimates, as the least-squares-fitting will
not succeed when the predicted keypoints and the object model keypoints are so different.

The reason for the incorrect keypoint prediction can be found in the keypoint loss function
used in FFB6D (see Eq. 4.7) which does not consider symmetries at all. The L1-Loss works
well for non-symmetric objects, but the loss function does not consider the ambiguity when
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there is a keypoint that has a symmetric counterpart.
For the network, a keypoint that has a symmetric counterpart is indistinguishable from
the symmetric keypoint, especially for a texture-less object. It is therefore possible that
the network predicts the symmetric keypoint instead of the correct ground truth keypoint,
resulting in a large L1-loss. An explanation for the final learned keypoints clustering at the
symmetric axis could be, that the network is not able to predict the correct keypoints because
of the symmetry ambiguity. But to minimize the loss, the network learns a compromise.
Instead of learning the exact keypoint, which sometimes yields a large loss when the incorrect
symmetric keypoint is predicted, the network learns keypoints on the symmetric axis, which
is equidistant from the correct ground truth keypoints and their symmetric counterparts.

Only a limited number of works tackle the symmetry problem directly. However, none of
these works use keypoints to predict the final 6D pose. CosyPose and PoseCNN are one of
these works, both implement the object symmetry in the loss function between the ground
truth pose and the predicted pose. Vote from the Center [34] is one keypoint-based approach
that tries to elevate the symmetry problem by learning more advanced keypoints, however
they do not tackle the symmetry problem directly. Another smaller work by Zhang et al.
[37] that also learns 3D keypoints, learns the object symmetry and additional symmetric
keypoints as an auxiliary task to improve the keypoint estimation. However, this approach
also predicts the 6D pose directly and works under the assumption that only one object at
the time is estimated, as well as that a ground truth mask of the scene is precomputed.
Although we want to keep the keypoint voting followed by a least-squares-fitting, which in
the past has outperformed direct regression of the pose [26, 13, 12], we find this approach of
learning symmetric keypoints the most suitable approach to adapt, to improve the results
of FFB6D for symmetric objects. However, unlike [37], we utilize the predicted symmetric
keypoints directly.

Symmetry-Aware Training
Our approach, keeps the least-squares-fitting and does not require a priori information of the
object masks and works for multiple objects at the time. To improve the training, we input the
ground truth symmetries of the objects present in the scene into the keypoint loss function
seen in Fig. 4.12. We decided against learning these symmetries directly, as they will not be
used at test time in our architecture. Also, learning these symmetries while simultaneously
using them in a loss function for another task might make the training unstable. By only
augmenting the loss function with the symmetries, which is the most critical part for this
symmetry problem, we can keep the entire network architecture and keep the same inference
procedure at test time.

For the final 6D pose it is irrelevant whether the network predicts the correct 6D pose or a
correct symmetric variation because the 6D pose is only defined up to a certain symmetry.
So it does not matter if the network predicts the correct ground truth keypoints or their
symmetric counterparts. However, it is important that the network predicts either only
the correct keypoints or only their symmetric counterparts, so that the least-squares-fitting
can be performed correctly. To ensure this, the loss will be minimized over the symmetries
of each offset for all object keypoints together, as shown in Eq. 4.11. Here So is the set of
all symmetries of the object o, including the identity. So f j∗

i is the offset transformed by the
symmetry, pointing toward the symmetric keypoint.
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Figure 4.12.: The ground truth symmetry is used at training time to calculate the minimum
loss over the keypoints and their symmetric counterparts. This addition prevents
keypoints clustering on the symmetric axis because the network can learn either
the correct keypoints or their symmetric counterparts directly.

Lkeypoints =
1
N

min
S∈SO

N∑
i=1

M∑
j=1

||o f j
i −So f j∗

i ||I(pi ∈ I) (4.11)

The loss function also has to handle objects with infinite rotational symmetries, such as the
DriveShaft object from the SCAPE 2 dataset. As we cannot minimize over infinite symmetries,
we have to discretize the infinite rotational symmetries. In the experiments chapter, we do
an ablation on how different discretizations affect the pose accuracy.

Ground Truth Symmetries
The adapted training regime requires ground truth symmetries for all objects in the dataset.
This information is neither available in the YCB-Video dataset nor in the SCAPE 2 dataset.
There are a couple of open-source algorithms for calculating the symmetry of an object. Often
these algorithms are very complex or require input data that is not available in YCB-Video
or the SCAPE 2 dataset. Therefore, we implemented a very small gradient optimization
algorithm to solve for the symmetry of the object given the mesh of the object. We use the
ADD-S metric from Eq. 2.11 as a loss function and optimize the center of the symmetry and
the symmetry axis as parameters of a symmetry transformation function fT. The symmetry
transformation function fT performs either a reflection or rotation along the symmetry
axis/plane to generate the symmetric mesh. The goal is to have a minimal loss between
the original mesh and the mesh that has been generated by the symmetry transformation,
resulting in the correct symmetry axis and symmetry center. Selected symmetries resulting
from this approach can be seen in Fig. 4.13 for all objects in the SCAPE 2 dataset. The
algorithm for the symmetry generation is shown in Alg. 4.2.0.
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(a) DriveShaft (b) Tool.Cap (c) T-Less_27

(d) BrakingUnit (e) T-Less_08

Figure 4.13.: Gradient optimized symmetries in the SCAPE 2 dataset. Shown are the meshes
of the symmetric objects in the SCAPE 2 dataset with one selected symmetry
each. A red pole indicates rotational symmetry around this axis. A yellow plane
indicates reflectional symmetry across that plane.

Algorithm 4.2.0 Algorithm to estimate ground truth symmetries for objects in the SCAPE 2
dataset via gradient descent

Input: object_mesh m, initial symmetry center c, initial symmetry axis s, number of iterations N
Output: final symmetry axis s∗, symmetry center c∗

1. best_loss← +∞

2. for n = 0 to N−1
3. sm := fT(m,s,c) // compute symmetric mesh
4. loss := ADD-S(m,sm)
5. if loss < best_loss
6. loss := best_loss
7. s* := s
8. c* := c
9. update s and c with SGD
10. return s∗,c∗

Symmetry Metric Extension
Besides using the ground truth symmetries in training, the ground truth symmetries can be
also used in the evaluation. The ADD-S metric has been established as the main metric for
evaluating the pose of a symmetric object. However, the comparison of the ADD and ADD-S
metric on non-symmetric object shows that the ADD-S is a little more forgiving (because of
the min operation) than the ADD metric, resulting in slightly higher ADD-S scores compared
to ADD score. Therefore, it is now common to evaluate pose estimation methods on the
ADD(S) metric, which combines the ADD and ADD-S metric, by only using the ADD-S
metric for preselected symmetric objects.
Because we now have the ground truth symmetries available, we can formulate a more
precise metric that works on symmetric and non-symmetric objects. We call this metric the

40



4.2. Proposed Network

ADD-Sym metric (see Eq. 4.12). It is a similar extension to the symmetric keypoint loss
function that we have introduced in Eq. 4.11. For non-symmetric objects this loss is identical
to the ADD metric, but for symmetric objects, the metric is minimized only over the correct
object symmetries, making this metric more precise than the ADD-S metric.

ADD-Sym =
1
|V|

min
S∈SO

∑
v∈V

||(Rv + t)− (R∗(Sv) + t∗)||2 (4.12)

Similar to the extension of the loss function, it is crucial to handle the infinite rotational
symmetries. We decide to set the maximum number of rotational symmetries to 64 to balance
precision with memory consumption.
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5. Experiments

In the previous chapter, we have introduced two independent extensions to the FFB6D
architecture. Both the multi-view extension and the symmetry-aware training aim to increase
the accuracy of 6D Pose Estimation in very complex scenes. To evaluate these changes, we
utilize the datasets described in Sec. 4.1. The evaluation of our multi-view extension is done on
the SCAPE YCB, SCAPE 2, SCAPE YCB2 and YCB-Video [35] dataset. The symmetry-aware
training is also evaluated on the SCAPE 2 dataset and on the YCB-Video dataset, but not the
SCAPE YCB(2) dataset, as those do not contain any symmetric objects.
The results of our novel architecture are compared against the standard single-view FFB6D
model, as well as a multi-view variation of PVN3D [8] on the same input data. Additionally,
on the YCB-Video dataset we evaluate against CosyPose [20]. Here the multi-view variations
of PVN3D and FFB6D get RGB-D data as their input, while the CosyPose model only accepts
RGB data.

Following PoseCNN [35], DenseFusion [31], PVN3D [13] and FFB6D [12] we report the
ADD-S-AUC [35] and ADD(S)-AUC [35] score for all objects individually as well as an average
over all objects. For a fairer comparison of the single-view and multi-view architecture, we
evaluate the single-view approach on all views that the multi-view approach gets to see and
rank them per scene by taking the average ADD(S) error for all objects in the scene. The
view with the lowest average ADD(S) error is denoted the best single-view. Similarly, the
view with the highest average ADD(S) error is denoted the worst single-view. For the final
comparison, we compute the average over all n views per scene and denote this as average
single-view.

5.1. SCAPE YCB

The SCAPE YCB dataset is the most similar dataset of our synthetic multi-view datasets
to the public YCB-Video dataset. It consists of the same objects as found in the YCB-Video
dataset. But we only use a subset of the objects that are non-symmetric. To evaluate our
symmetry advances, we exclusively use the separate SCAPE 2 dataset. Although the number
of different objects is lower in the SCAPE YCB dataset compared to the YCB-Video dataset,
the number of objects per scene is generally higher than in the YCB-Video dataset. Also, the
objects are way more cluttered in the center of the scene, which results in a higher number of
occlusions compared to the YCB-Video dataset, which should highlight the advances of a
multi-view approach better.

The ADD-S and ADD(S) results for the SCAPE YCB can be seen in Tab. 5.1. We evaluate our
multi-view model against the single-view FFB6D [12] using the ranked views. Furthermore,
we compare with the single-view and multi-view variation of PVN3D [13, 8].

Although FFB6D claims impressive performance on LINEMOD Occlusion [3], which is
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PVN3D FFB6D

SV (Avg) MV (Avg) SV (Avg) SV (Best) SV (Worst) MV (Avg)

ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S)

banana 68.74 57.00 95.13 90.37 69.51 59.44 85.85 76.04 50.66 42.46 95.72 91.48

cracker box 95.99 94.87 96.87 96.49 95.96 94.93 95.88 94.85 96.07 95.10 97.28 97.28

gelatin box 62.82 55.37 94.11 89.67 65.91 58.54 82.58 74.01 47.59 41.77 95.00 91.67

master chef can 93.21 88.17 98.22 97.61 93.29 87.31 95.96 90.80 90.24 83.98 98.43 97.87

mustard bottle 86.38 79.50 97.59 96.52 87.16 81.37 93.56 88.40 80.19 73.10 97.89 97.10

potted meat can 81.53 75.30 97.34 95.82 84.36 77.42 91.53 85.47 75.31 66.87 97.56 96.23

power drill 90.92 87.09 96.94 95.79 91.36 88.25 94.60 91.82 87.16 83.06 97.71 97.17

pudding box 78.14 71.07 97.45 95.31 78.77 72.97 91.01 85.37 65.49 59.60 97.68 96.22

sugar box 88.72 83.66 97.97 97.15 89.15 85.42 94.61 91.41 82.95 79.49 98.39 97.82

tomato soup can 79.93 73.44 97.77 96.18 80.96 74.93 91.38 85.34 68.51 63.03 97.97 96.72

tuna fish can 68.18 58.22 96.68 91.59 69.12 58.93 85.40 74.04 50.60 43.06 96.79 91.88

ALL 81.32 74.88 96.91 94.77 82.32 76.32 91.12 85.23 72.25 66.50 97.31 95.56

Table 5.1.: Quantitative comparison between PVN3D single-view (SV), PVN3D multi-view
(MV), FFB6D single-view and FFB6D multi-view on the SCAPE YCB dataset. The
ADD-S and ADD(S)-AUC are reported. The best results for ADD-S-AUC and
ADD(S)-AUC are highlighted in bold.

another single-view dataset that offers scenes with a high number of occlusion, it can be
observed that the single-view version of FFB6D struggles on the SCAPE-YCB dataset. The
average accuracy of the single-view FFB6D model for all scenes in the test set is drastically
lower compared to our multi-view FFB6D model. The accuracy of our multi-view model on
the ADD(S) metric is almost 20% better compared to the average single-view results and for
the ADD-S metric, we achieve almost 15% better results for an AUC<0.1m. The separation
into best and worst view also gives a great insight. For the worst view where objects are most
occluded, the overall accuracy drops to ∼66% for the ADD(S) metric. A clear outlier is the
cracker box with ∼95% accuracy on the ADD(S) metric. It is the largest object in the SCAPE
YCB dataset and consequently it is rarely heavily occluded by other objects which explains
the high accuracy. Furthermore, it can be observed that the single-view results of the best
view fall short of the multi-view results, with ∼85% accuracy for the single-view model and
∼95% accuracy for our multi-view model on the ADD(S) metric. This clearly shows that our
approach does more than focus on the view where most objects are best visible, but it actually
fuses information from all views to achieve better results than just from a single view.

Tab. 5.1 also shows that the single-view FFB6D model is able to outperform the older and
simpler network architecture of the single-view PVN3D model on the average single view.
Consequently, we expect our multi-view model to be able to outperform the multi-view
variation of PVN3D. Indeed, we are able to outperform the multi-view variation of PVN3D
with our multi-view adaptation of FFB6D. However, the accuracy difference between the
multi-view PVN3D and the multi-view FFB6D model is smaller than the accuracy difference
between the single-view PVN3D and single-view FFB6D model. While single-view FFB6D
improves about 1.5% over PVN3D on the average single-view for the overall ADD(S) metric,
the multi-view FFB6D model is only able to outperform multi-view PVN3D by about 0.8%
on the ADD(S) metric. We argue that this improvement is still a big improvement because
the pose accuracy for the multi-view case is almost saturated for some objects, which makes
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larger improvements harder.

Figure 5.1.: Qualitative comparison between single-view FFB6D and multi-view FFB6D.
Shown are four randomly selected samples from SCAPE YCB test set. The object
meshes are projected into the image space using the camera intrinsics and ground
truth poses/predicted single-view poses/predicted multi-view poses. A good
alignment between the projected meshes and the shown objects in the image
indicates an accurate 6D pose.

The qualitative results confirm the quantitative results from Tab. 5.1. Fig. 5.1 shows a random
selection from the SCAPE YCB test set. The meshes are projected into the image plane using
the camera intrinsics and the predicted/ground truth poses. Qualitatively, the single-view
predictions are already very good. Here, we will highlight objects and scenes where the
multi-view model outperforms the single-view model.
In the first row, the pose of the power drill (green mesh) is predicted much more accurately
for the multi-view model. Also, the tomato soup can (blue mesh) is not detected at all using
the single-view model, while the multi-view model predicts the pose almost perfectly.
In the second row, the multi-view and single-view predictions are very similar. A big
difference can be seen for the pudding box (light yellow mesh) for which only a tiny corner
is visible.
The predictions of the multi-view model for the scene shown in the third row are much better
compared to the single-view predictions. Not only are the predicted poses for the banana
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(red mesh), power drill (green mesh) and sugar box (purple mesh) much more accurate, but
the multi-view model also predicts the pose of the pudding box (light yellow mesh) correctly,
which the single-view model completely displaces. Additionally, the multi-view model is
able to predict the mustard bottle (pink mesh) correctly, which is not visible from this view.
The fourth row highlights this advantage of the multi-view model even further. The multi-
view model is able to correctly predict the pose of the banana (red mesh), gelatin box (light
yellow mesh), pudding box (green mesh), tuna fish can (light blue mesh) and tomato soup
can (blue mesh), all of which are fully occluded by the large cracker box in the foreground of
the view.

Precision Metric
To evaluate how close our multi-view approach is to predicting the object pose below the
error threshold for successful robot manipulation, we evaluate our multi-view FFB6D model
and also the single-view variation on the ADD(S)<2cm metric. We compare against the
predecessor PVN3D as well.

PVN3D FFB6D

SV (Avg) MV (Avg) SV (Avg) SV (Best) SV (Worst) MV (Avg)

ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S)

banana 64.47 51.80 96.88 91.21 67.15 56.63 84.05 73.98 47.72 39.33 97.20 92.57

cracker box 98.64 97.92 98.92 98.80 98.72 98.32 98.68 98.44 98.68 98.44 98.92 98.76

gelatin box 63.95 51.48 96.16 89.37 66.87 53.92 83.93 68.71 47.96 37.77 96.52 92.09

master chef can 95.16 88.49 99.76 99.60 95.36 87.49 98.20 91.01 92.09 84.17 99.76 99.28

mustard bottle 87.01 78.70 99.52 98.68 88.33 81.14 94.96 88.97 80.82 71.82 99.40 98.76

potted meat can 83.41 73.46 99.24 97.92 86.37 75.62 93.65 84.77 76.98 63.55 99.08 97.76

power drill 91.97 88.85 99.16 98.80 92.81 90.13 96.28 93.76 87.65 84.41 99.24 99.04

pudding box 78.90 69.58 99.40 97.52 80.34 72.10 93.05 84.65 66.91 58.15 99.28 97.80

sugar box 89.53 83.77 100.00 99.76 90.37 86.13 96.16 92.81 83.81 80.10 99.96 99.68

tomato soup can 81.18 71.10 99.56 98.68 82.37 72.14 93.05 82.61 69.78 59.95 99.48 98.48

tuna fish can 69.66 48.08 98.72 90.97 70.66 49.24 87.65 62.83 51.44 36.45 98.64 90.01

ALL 82.17 73.02 98.85 96.48 83.58 74.81 92.70 83.87 73.08 64.92 98.86 96.75

Table 5.2.: Quantitative comparison between PVN3D single-view (SV), PVN3D multi-view
(MV), FFB6D single-view and FFB6D multi-view on the SCAPE YCB dataset for
the precision metric. The ADD-S<2cm and ADD(S)<2cm metrics are reported. The
best results for the ADD-S<2cm and ADD(S)<2cm metric are highlighted in bold.

In Tab. 5.2 we compare our multi-view model against the multi-view variation of PVN3D
and the average, best and worst view from the FFB6D single-view model. Similarly to the full
ADD(S)-AUC and ADD-S-AUC results the multi-view FFB6D model outperforms the single-
view model on the average and worst view and even the best view. However, the comparison
between multi-view PVN3D and multi-view FFB6D is much closer. While the single-view
variation of FFB6D is able to outperform the single-view variation of PVN3D by about 1.8%
on the ADD(S)<2cm metric, the multi-view results for FFB6D are only approximately 0.25%
better than the multi-view results on the ADD(S)<2cm metric. For many objects like the
cracker box, master chef can, sugar box, tomato soup can and tuna fish can the multi-view
variation of PVN3D is able to outperform the FFB6D results on the ADD(S)<2cm metric by a
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small amount. Similarly to the standard ADD(S)-AUC results, we argue that the accuracy is
already very saturated, which makes improvements very hard.

To investigate this issue in more detail, Fig 5.2 shows the AUC of multi-view FFB6D and
multi-view PVN3D for an ADD(S) error from 0m to 0.05m for all objects combined, with
the 2cm threshold marked. In Appendix A, we list the AUCs for all objects separately. Fig.

Figure 5.2.: Comparison of the full ADD(S)-AUC for multi-view FFB6D and multi-view
PVN3D. The 2cm threshold is highlighted separately.

5.2 shows that the multi-view FFB6D model generally predicts more objects with higher
precision below the error threshold of 1.5cm compared to PVN3D. However, at the 2cm
precision threshold (which represents the ADD(S)<2cm metric) multi-view PVN3D and
multi-view FFB6D converge to approximately perform equally well. With a growing precision
threshold above 4cm multi-view FFB6D begins to outperform PVN3D again, which explains
the improved performance on the full ADD(S)-AUC metric.

Noisy Fusion
Since our multi-view approach relies heavily on the known relative camera positions for
the fusion of the depth information of each camera to a global point cloud, we wanted to
evaluate how well our approach could handle situations where the relative camera position
are not perfectly known. This is especially relevant for a real-world setup, where it is difficult
to perfectly place the cameras at the assumed positions. For this, a variation of the SCAPE
YCB dataset exists where some noise of up to 2.5cm is added to the camera positions. The
resulting fused point cloud is not properly aligned, as the assumed camera positions used to
project the point cloud into a global coordinate system do not reflect the actual positions.
The effects of these noisy camera positions can be seen in Fig. 5.3 for the first scene in the
SCAPE YCB dataset.

Fig. 5.3 shows that even a small offset between the assumed and actual camera positions
can result in objects overlapping or being split apart. Nevertheless, the objects are still
recognizable but the estimation of the exact pose is much more difficult because of the
imprecise representation of the objects in the point cloud.
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(a) Accurate Camera Positions (b) Noisy Camera Positions

Figure 5.3.: Comparison between a point cloud generated using the accurate camera positions
and a point cloud generated using noisy camera positions from the SCAPE YCB
dataset. The effects of the noisy camera positions can be best identified by the
large cracker box object in the scene center.

In Tab. 5.3 we compare the results of single-view and multi-view FFB6D against the single-
view and multi-view results of PVN3D on noisy SCAPE YCB. Although the noisy camera
positions only affect the fusion directly, we also train the single-view models on the noisy
dataset because the single-view viewing angles are also affected by the random shift of the
cameras.

PVN3D FFB6D

SV (Avg) MV (Avg) SV (Avg) SV (Best) SV (Worst) MV (Avg)

ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S)

banana 67.60 55.21 94.28 88.11 69.11 58.17 84.87 73.72 50.66 42.34 94.90 89.05

cracker box 94.81 92.56 95.64 94.29 95.49 93.88 95.63 94.24 95.56 94.01 95.92 94.67

gelatin box 62.39 54.52 93.80 87.70 63.72 56.17 80.37 72.09 45.09 38.39 94.28 88.99

master chef can 92.39 85.92 97.29 96.10 92.91 86.75 95.36 89.90 90.41 83.54 97.31 95.93

mustard bottle 85.28 77.80 96.83 94.83 86.05 79.28 92.04 85.99 79.09 71.61 96.95 94.73

potted meat can 80.15 72.95 96.60 94.31 82.05 74.86 91.23 84.13 70.06 62.03 96.27 94.30

power drill 89.98 84.90 96.27 94.41 90.75 86.32 94.11 90.44 86.41 81.22 96.64 95.17

pudding box 76.83 69.14 96.77 93.59 78.12 70.85 89.07 81.94 65.06 58.39 96.96 94.38

sugar box 87.43 81.49 97.14 95.34 88.55 83.70 93.63 89.10 83.19 78.01 97.35 95.82

tomato soup can 79.35 71.75 96.98 94.45 80.56 73.27 92.04 84.63 68.14 61.29 97.08 94.74

tuna fish can 67.49 56.31 96.20 89.86 68.98 58.01 85.34 72.69 50.23 41.90 96.26 89.14

ALL 80.34 72.96 96.16 93.00 81.48 74.66 90.33 83.53 71.26 64.80 96.36 93.35

Table 5.3.: Quantitative comparison between PVN3D single-view (SV), PVN3D multi-view
(MV), FFB6D single-view and FFB6D multi-view on the SCAPE YCB (Noisy)
dataset. The ADD-S and ADD(S)-AUC are reported. The best results for ADD-S-
AUC and ADD(S)-AUC are highlighted in bold.

Similar to the results using accurate poses, single-view FFB6D clearly outperforms single-
view PVN3D. But although the point cloud fusion is highly affected by the noisy camera
positions, the multi-view FFB6D model is able to outperform the average, best and worst
view for all objects. The multi-view FFB6D model is also able to outperform the multi-view
PVN3D model. However, for some objects, the PVN3D model is better than the FFB6D
model.
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Fig. 5.4 shows a quantitative comparison of FFB6D with FFB6D on noisy data. For the
multi-view models each object has one data point belonging to the ADD(S)-AUC accuracy for
that object. Each single-view model also has one data point belonging to the ADD(S)-AUC
accuracy on the average view. The error bars for the single-view results indicate the ADD(S)-
AUC accuracy for the best and worst view respectively. The multi-view model evaluated on
the accurate data outperforms the model evaluated on noisy data for all objects. However,
the difference is marginal. The noisy multi-view FFB6D model is still able to outperform the
single-view model on accurate data for all objects except for the cracker box where the best
single-view model achieves an ADD(S)-AUC accuracy of 94.85% while the noisy multi-view
model achieves only 94.67%.

Figure 5.4.: Quantitative comparison of single-view FFB6D on accurate camera poses and
multi-view FFB6D on accurate and noisy camera poses respectively. Results
taken from Tab. 5.1 and Tab. 5.3.

Fig. 5.5 confirms the small difference between the multi-view pose estimates on data with
accurate camera positions and the multi-view pose estimates on data with noisy camera
positions. The first row shows an example where the pose difference between the model using
accurate camera positions and the model using noisy camera positions is large, especially
for the power drill (green mesh) and the tuna fish can (light blue mesh) . The second row
shows a similar result. While the model utilizing the accurately fused point cloud predicts
the tuna fish can (light blue mesh) and mustard bottle (pink mesh) perfectly, the model
only having access to the imperfectly fused point cloud predicts poses that are much worse.
However, the predictions shown in the third and fourth rows are almost identical for the
multi-view model using accurate camera positions and the multi-view model using noisy
camera poses. Overall, the qualitative results confirm that our multi-view approach is robust
towards imperfectly placed cameras.

Object Size
In our standard, precision and noisy experiments we observe that the pose accuracy of larger
objects, especially the cracker box, do not benefit as much from the multi-view setup as
smaller objects like the gelatin box. This intuitively makes sense. Larger objects will be better
visible from different views, while it is very likely that a smaller object gets occluded by
a bigger object. This also correlates well with the evaluation of the best and worst single
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Figure 5.5.: Qualitative comparison between multi-view FFB6D using accurate camera
positions and multi-view FFB6D using noisy camera positions. Shown are four
randomly selected samples from SCAPE YCB test set. The object meshes are
projected into the image space using the camera intrinsics and 6D poses. A good
alignment between the projected meshes and the shown objects in the image
indicates an accurate 6D pose.

view. While large objects like the cracker box, master chef can and sugar box have a smaller
variation across views, smaller objects like the banana, gelatin box, or tuna fish can have
very large variation across views.

5.2. SCAPE 2

The SCAPE 2 dataset is more simple than the SCAPE YCB dataset, as it only contains at most
six objects, which results in far fewer occlusions. However, all of the objects in this dataset
are texture-less, which makes it harder for the network to learn visual features on them. But
the biggest challenge in this dataset are the symmetries of the objects because all objects in
the SCAPE 2 dataset except for the T-Less_18 object have at least one symmetry. Tab. 5.4
shows the quantitative results on the SCAPE 2 dataset. Similarly to the SCAPE YCB dataset
we compare our multi-view architecture against the best, worst, and average single-view of
the single-view FFB6D [12] model. Additionally, we compare against single-view PVN3D
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[13] and its multi-view variation [8].

PVN3D FFB6D

SV (Avg) MV (Avg) SV (Avg) SV (Best) SV (Worst) MV (Avg)

ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S)

Tool.Cap 90.49 90.49 98.57 98.57 90.27 90.27 97.66 97.66 79.77 79.77 98.62 98.62

DriveShaft 92.71 92.71 98.63 98.63 92.69 92.69 97.80 97.80 85.86 85.86 98.71 98.71

BrakingUnit 91.44 91.44 97.94 97.94 91.74 91.74 97.50 97.50 84.21 84.21 98.19 98.19

T-Less_18 90.30 86.85 98.41 97.58 89.72 86.55 97.83 96.10 77.64 73.01 98.45 97.56

T-Less_08 98.43 98.43 98.71 98.71 98.13 98.13 98.20 98.20 98.12 98.12 99.09 99.09

T-Less_27 94.46 94.46 94.17 94.17 92.91 92.91 94.06 94.06 91.71 91.71 93.55 93.55

ALL 92.93 92.40 97.74 97.60 92.58 92.05 97.17 96.89 86.22 85.45 97.77 97.62

Table 5.4.: Quantitative comparison between PVN3D single-view (SV), PVN3D multi-view
(MV), FFB6D single-view and FFB6D multi-view on the SCAPE 2 dataset. The
ADD-S and ADD(S)-AUC are reported. Symmetric objects are highlighted in bold.
The best results for ADD-S-AUC and ADD(S)-AUC are also highlighted in bold.

The performance difference between the FFB6D multi-view architecture and the FFB6D
single-view architecture is smaller compared to the SCAPE YCB dataset. In the SCAPE YCB
dataset, the multi-view architecture outperforms the single-view architecture on all objects
for the ADD-S and ADD(S) metric by a large margin. On the SCAPE 2 dataset, however,
the performances of both methods are closer. Especially for the larger objects like T-Less_08
and T-Less_27 where the average ADD-S and ADD(S) score between the single-view and
the multi-view model are very close. For the T-Less_27, the single-view architecture is even
able to outperform the multi-view architecture for the best view. A reason for this might
be that the multi-view architecture gets features of the whole object while the single-view
architecture only gets features from one side of the object, this might make the symmetry
problem even worse. For the smaller objects, however, the FFB6D multi-view architecture is
able to outperform the single-view method. This supports the results from the SCAPE YCB
dataset, that the multi-view method is especially effective for smaller objects.

The results between FFB6D and PVN3D are very close. Overall, our multi-view FFB6D model
outperforms the multi-view PVN3D architecture. However, the difference is very small.
A significant factor for this is the rotational symmetric T-Less_27 object. The single-view
PVN3D model achieves the best accuracy on this object, followed by the multi-view PVN3D
model, our multi-view FFB6D model and the original single-view model perform much
worse on this object. For all other objects, FFB6D and our multi-view variation outperforms
the PVN3D models by a small margin. It appears that the FFB6D model and consequently
our multi-view extension is more susceptible to the symmetry problem than the PVN3D
model.

The qualitative results seen in Fig. 5.6 support the quantitative results of Tab. 5.4. Since the
scenes in the SCAPE 2 dataset are less cluttered than the scenes in the SCAPE YCB dataset,
it barely happens that an object is not visible from one single view. The first row of Fig.
5.6 shows pretty similar results between the single-view and multi-view results. However,
the pose of the T-Less_27 object (gray mesh) is much worse for the multi-view predictions.
Row two shows one of the few scenes where an object is fully occluded by another object.
The multi-view architecture is able to estimate the pose of this object, while the single-view

51



Chapter 5. Experiments

Figure 5.6.: Qualitative comparison between single-view FFB6D and multi-view FFB6D.
Shown are four randomly selected samples from SCAPE 2 test set. The object
meshes are projected into the image space using the camera intrinsics and ground
truth poses/predicted single-view poses/predicted multi-view poses. A good
alignment between the projected meshes and the shown objects in the image
indicates an accurate 6D pose.

model is not able to do this. All other objects are roughly equally well estimated for both
the single-view and multi-view model. The T-Less_27 object (gray mesh) is again estimated
poorly with the multi-view model but the single-view model also did not estimate the pose
well, In the third row all objects are estimated pretty well including the T-Less_27 object
(gray mesh). The T-Less_08 (pink mesh) object, which is very far away from the camera
recording this view, is estimated a little more accurately with the multi-view model because
it has access to another view where the object is closer to the camera. The fourth row also
shows a simple scene where all objects are visible. The single-view model again predicts the
pose of the T-Less_27 object (gray mesh) much more accurately. However, the multi-view
model estimates the pose of the non-symmetric T-Less_18 (yellow mesh) object much better.

Precision Metric
Additionally, to the ADD(S)-AUC and ADD-S-AUC metric we evaluate our multi-view
model on the precision ADD(S)<2cm and ADD-S<2cm metric. We compare our multi-view
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FFB6D model against its single-view variation as well as PVN3D. Tab. 5.5 shows the results.

PVN3D FFB6D

SV (Avg) MV (Avg) SV (Avg) SV (Best) SV (Worst) MV (Avg)

ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S)

Tool.Cap 91.93 91.93 100.00 100.00 91.89 91.89 99.52 99.52 81.06 81.06 100.00 100.00

DriveShaft 93.61 93.61 100.00 100.00 93.80 93.80 99.40 99.40 86.33 86.33 99.92 99.92

BrakingUnit 92.61 92.61 99.64 99.64 93.09 93.09 99.04 99.04 85.25 85.25 99.52 99.52

T-Less_18 90.73 85.73 99.40 99.28 90.45 86.13 98.92 98.68 77.58 68.82 99.40 99.16

T-Less_08 99.92 99.92 100.00 100.00 99.92 99.92 100.00 100.00 99.88 99.88 100.00 100.00

T-Less_27 98.72 98.72 99.84 99.84 98.88 98.88 99.64 99.64 97.72 97.72 99.76 99.76

ALL 94.58 93.75 99.81 99.79 94.67 93.95 99.42 99.38 87.97 86.51 99.77 99.73

Table 5.5.: Quantitative comparison between PVN3D single-view (SV), PVN3D multi-view
(MV), FFB6D single-view and FFB6D multi-view on the SCAPE 2 dataset for
the precision metric. The ADD-S<2cm and ADD(S)<2cm metrics are reported.
Symmetric objects are highlighted in bold. The best results for the ADD-S<2cm
and ADD(S)<2cm metric are also highlighted in bold.

Similar to the non-precision metric, multi-view FFB6D outperforms the average single-view
of FFB6D. The results for the multi-view model are very good. The multi-view model even
reaches 100% accuracy for the Tool.Cap and T-Less_08 object. This means that the multi-view
FFB6D model is always able to predict those objects with an accuracy that is satisfactory for
object manipulation. But also for other objects, the precision is in the high 99% resulting
in an overall ADD(S)<2cm score of 99.73%. The best view of the single-view model can
match these extraordinary results of 100% accuracy for the T-Less_08 object. But on the
average single-view the single-view FFB6D model does not reach 100% for any object, but it
still reaches a very respectable ADD(S)<2cm score of 93.95%. Similarly to the SCAPE YCB
dataset, the multi-view FFB6D model struggles to improve over the multi-view PVN3D
results. In fact, PVN3D outperforms FFB6D averaged over all objects for the ADD(S)<2cm
metric. However, the accuracy for the Tool.Cap and T-Less_08 objects is fully saturated,
which makes a meaningful quantitative comparison very challenging.

Symmetry Extension
The single-view and multi-view results with FFB6D clearly show that the network drastically
underperforms for symmetric objects, especially for the T-Less_27 object. A symmetry-aware
training is therefore highly relevant.

Using the symmetry-aware training introduced in Sec. 4.2.3, we first evaluate the effects
qualitatively in Fig. 5.7 by first analyzing how our symmetry-aware training benefits the
final keypoint predictions.

In Fig. 5.7, we compare the keypoint predictions of a single-view FFB6D model using our
new symmetry-aware training and a single-view FFB6D model using the standard training
procedure. Fig. 5.7b demonstrates that the symmetry-aware training succeeds in producing
better keypoint proposals. Rather than having keypoints cluster on the symmetric axis, the
new predicted keypoints are well distributed across the object. Additionally, Fig. 5.7 gives
an insight into the improved loss function. The ground truth keypoints colored in black
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in Fig. 5.7b are different from the ground truth keypoints in Fig. 5.7a. This is because only
those ground truth keypoints are visualized that have the smallest distance to the predicted
keypoints, which are the only keypoints that contribute to the loss from Eq. 4.11. For the

(a) (b)

Figure 5.7.: Qualitative results of the keypoint estimation on SCAPE 2. Predicted keypoints
are colored in white. The ground truth keypoints are colored in black. The pre-
clustered keypoint proposals for each object are highlighted in a separate color
for each object. The keypoints that were trained in a symmetry-aware manner,
are well distributed across the whole object (b), while the keypoints that were
trained with the standard loss function, cluster around the symmetry axis.

infinite rotational objects, we discretize the symmetries into four discrete symmetries to
utilize their symmetries in training.

(a) (b)

Figure 5.8.: Qualitative results on SCAPE 2. The object meshes are projected into the image
space with the estimated poses and the camera intrinsics. A good object mesh
alignment indicates a good pose estimate. Symmetry-aware training (b) shows
large improvements over the standard training (a), especially for the red T-Less_27
object.

But the improved results are visible not only in the keypoint predictions but also in the
final pose predictions. Fig. 5.8 shows the mesh projections into the image space based
upon the predicted 6D pose with and without symmetry-aware training. Especially the
pose for the T-Less_27 object is much better. But also the rotational symmetric Tool.Cap
object and DriveShaft object align better with the projected mesh. The reflectional symmetric
BrakingUnit and the T-Less_08 object do not benefit as much from the symmetry-aware
training as the rotational symmetric objects, but their pose predictions improve slightly too.

Besides showing great qualitative improvements over the standard training, the quantitative
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results confirm the improvement with symmetry-aware training. In Tab. 5.6 we compare
the improved pose estimation performance for single-view and multi-view on the ADD-S,
ADD(S) metric and our in Eq. 4.12 introduced ADD-Sym metric.

Standard Symmetry-Aware

Single-View (Avg) Multi-View (Avg) Single-View (Avg) Multi-View (Avg)

ADD-S ADD(S)
ADD

Sym
ADD-S ADD(S)

ADD

Sym
ADD-S ADD(S)

ADD

Sym
ADD-S ADD(S)

ADD

Sym

Tool.Cap 90.57 90.57 88.43 98.62 98.62 97.74 90.80 90.80 90.15 99.05 99.05 98.59

DriveShaft 92.73 92.73 90.47 98.71 98.71 98.06 93.68 93.68 92.00 99.00 99.00 98.69

BrakingUnit 91.63 91.63 87.09 98.19 98.19 96.17 92.00 92.00 89.93 98.65 98.65 98.02

T-Less_18 89.34 86.33 86.33 98.45 97.56 97.56 89.42 87.16 87.16 98.46 97.65 97.65

T-Less_08 98.37 98.37 97.49 99.09 99.09 98.93 98.51 98.51 98.42 98.98 98.98 99.06

T-Less_27 92.47 92.47 82.09 93.55 93.55 83.82 97.70 97.70 96.65 98.94 98.94 98.41

ALL 92.52 92.02 88.64 97.77 97.62 95.37 93.80 93.43 92.39 98.85 98.71 98.40

Table 5.6.: Quantitative comparison between PVN3D single-view (SV), PVN3D multi-view
(MV), FFB6D single-view and FFB6D multi-view on the SCAPE 2 dataset. The
ADD-S, ADD(S) and ADD-Sym-AUC metrics are reported. Symmetric objects are
highlighted in bold. The best results for ADD-S-AUC and ADD(S)-AUC are also
highlighted in bold.

Firstly, it becomes clear that the introduction of our ADD-Sym metric works very well. The
ADD-Sym metric is almost always a little lower compared to the ADD-S metric, which was
expected since the ADD-Sym metric is, like the ADD metric, a little more precise than the
ADD-S metric. This should make the accuracy on symmetric and non-symmetric objects a
little more comparable.
Secondly, we observe that the single-view FFB6D model as well as the multi-view FFB6D
model greatly benefit from the symmetry-aware training. Using the symmetry-aware training,
the single-view results improve averaged over all objects by about 1.4% for the ADD(S)-AUC
metric and for the multi-view model the results improve also by a respectable 1.3% on the
ADD(S)-AUC metric to achieve a final score of 98.94%. The improvements per object vary. The
only object that does not improve for both the single-view and multi-view symmetry-aware
models is the T-Less_08 object, which already had a very high ADD(S) score. But all other
objects improve by a large margin for both the single-view as well as the multi-view model.
The greatest improvement can be seen for the T-Less_27 object which improves by over
5% for both the single-view and multi-view models on the ADD(S) metric. For our new
symmetry metric, this improvement becomes even more clear. For the single-view model, we
achieve an overall improvement of about 7% and for the multi-view model the improvement
is about 6%. Also, the T-Less_08 object, which is the only object that does not improve on the
ADD-S metric, improves slightly on the ADD-Sym metric. As our ADD-Sym metric is stricter
than the ADD-S metric, we argue that the ADD-Sym metric is more reliable to indicate the
improvements made by our symmetry-aware training.

Overall, the symmetry-aware training shows great promise. A big challenge remains as to
how to model the infinite rotational symmetries. The results in Tab. 5.7 have been generated
with four rotational symmetries during training. However, it is valuable to investigate
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whether additional rotational symmetries improve results. In Tab. 5.7 we show an ablation
with a varying number of rotational symmetries for the two infinite rotational symmetric
objects.

n Symmetries 0 4 8 16 32 64
Tool.Cap 90.57 90.80 91.19 90.96 91.34 91.82

DriveShaft 92.73 93.52 93.70 94.28 93.76 93.94

Table 5.7.: Ablation study for the modeling of the infinite rotational objects using varying
discretization steps.

Tab. 5.7 shows that a finer discretization of the infinite rotational symmetry improves the final
pose predictions. For the Tool.Cap we see a continuous improvement for finer/more discrete
rotational symmetries. In our experiments, training with more rotational symmetries does
not noticeably increase training time, nor GPU memory consumption, however, it requires
more CPU memory in the data loading process. As CPU memory is often not a limiting factor,
it is advisable to train with a very fine discretization of the infinite rotational symmetries.
For the DriveShaft however, we achieve the best ADD-S score for 16 rotational symmetries.
We believe this is because the DriveShaft object seen in Fig. 4.4 is not fully infinite rotational
symmetric. The infinite rotational symmetry seems to be broken by the groves at the head of
the DriveShaft. Consequently, the results from Tab. 5.7 indicate that the DriveShaft has at
most 16 discrete rotational symmetries.

5.3. SCAPE YCB2

The SCAPE YCB2 dataset is slightly more difficult for the network to learn than the SCAPE
YCB dataset because the camera poses are different across scenes. Here, the network has
to generalize the fusion of different camera poses. Additionally, because the SCAPE YCB2
datasets offers four views around the scene with an extra top-down view, it is possible to
evaluate how beneficial additional cameras are.

In Tab. 5.8 we have evaluated the effect of different amounts of cameras to observe the scene.
For the single-view model we only report the average view as we want to focus in this
comparison on the different amounts of views and the relation between best, average and
worst view is very similar to the SCAPE YCB dataset. For the multi-view model we have
trained the model on three, four, and four cameras with an additional top-down view.
Similar to the SCAPE YCB results, the multi-view models outperform the averaged single-
view FFB6D [12] model over all views of the scene. The multi-view networks are able to
generalize multi-view fusion even if the camera setup changes each training sample. However,
there is no clear number of views that outperforms the others. The models utilizing three,
four and five views, respectively, achieve very similar results when averaged over all objects.
Especially, four views and five views (four views plus top-down view) perform almost
identical overall. Four views with the additional top-down view performs the best overall
on the most relevant ADD(S) metric. For large objects like the cracker box, mustard bottle,
sugar box and power drill, the model trained and evaluated on three views outperforms or
matches the performance of the models with additional views. We hypothesize that for these
larger objects, three views are enough to estimate the pose precisely and that further views
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Single-View Multi-View

Single-View (avg) Multi-View (3) Multi-View (4) Multi-View (5)

ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S)

banana 78.16 70.59 95.85 91.76 96.96 94.41 97.05 95.07

cracker box 95.87 94.58 96.89 96.16 96.91 96.37 97.00 96.50

gelatin box 75.62 70.11 95.95 93.05 97.02 94.95 96.97 94.72

master chef can 93.20 88.34 97.66 96.84 97.72 96.94 97.32 96.29

mustard bottle 89.53 84.83 97.51 96.33 97.54 96.69 97.36 96.50

potted meat can 86.84 82.08 97.69 96.23 97.84 96.72 97.67 96.62

power drill 93.13 90.48 96.85 96.11 96.95 96.32 96.62 95.89

pudding box 84.07 79.77 97.20 95.76 97.74 96.58 97.53 96.32

sugar box 90.91 87.78 97.47 96.74 97.39 96.67 97.28 96.50

tomato soup can 85.54 80.48 97.99 96.38 98.17 96.99 97.85 96.61

tuna fish can 76.31 67.45 96.06 91.51 97.44 94.00 97.49 94.55

ALL 86.29 81.50 97.01 95.17 97.43 96.06 97.30 95.96

Table 5.8.: Quantitative comparison between single-view FFB6D and multi-view FFB6D
using three, four or five views on the SCAPE YCB2 dataset. The ADD-S and
ADD(S)-AUC are reported. The best results for ADD-S-AUC and ADD(S)-AUC
are highlighted in bold.

do not add any beneficial information about the object, but increase the multi-view fusion
complexity for the fusion modules described in Sec. 4.2.2, which may lead to more unstable
training and slightly worse results.
The additional top-down view, included in the five views model, does not appear to be
highly beneficial compared to the four views model. For some objects five views do improve
the ADD(S) score and for some objects even the ADD-S score improves compared to only
four views. It is hard to argue why exactly these objects benefit from a top-down perspective.

An explanation could be that those objects that benefit from the additional top-down view
appear symmetric from some angles which deteriorates the pose estimation performance
of the model and that only the additional top-down view detects features that break the
symmetry.

Changing View Count
Tab. 5.8 shows the results of multi-view models that have been trained and evaluated on the
same number of views. In Fig. 5.9 we evaluate whether a model trained on three views is
able to utilize four views at test time and vice-versa. This gives great insight into whether
the models learn a fixed fusion of fixed views or whether a trained model is robust towards
changing cameras.

In Fig. 5.9a, it is shown that a model trained on three views is able to leverage four views at
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test time without any changes to the network architecture or normalization. The network is
able to use the additional view, which gives extra information of the scene, to improve the
pose estimation accuracy for all objects.

Similarly, Fig. 5.9b shows that it is possible to apply a model, that has been trained with four
views, to only three views. Although the pose estimation accuracy decreases when testing
with one view less, multi-view FFB6D still demonstrates that it is robust towards changing
number of cameras.

(a) Comparison of multi-view FFB6D trained and tested on three views vs multi-view FFB6D
trained on three views and tested on four views.

(b) Comparison of multi-view FFB6D trained and tested on four views vs multi-view FFB6D
trained on four views and tested on three views. views.

Figure 5.9.: Quantitative comparison of changing view count at test time.
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5.4. YCB-Video

Multi-View
Evaluating our approach on YCB-Video [35] is challenging, because we cannot use the
synthetic frames provided by the YCB-Video datasets to train our multi-view FFB6D [12]
network. However, evaluating on YCB-Video is necessary, as it is the only public real dataset
where we can compare against another multi-view approach.

We solve the issue of the limited training data, by pretraining the network for the single-view
task and then fine-tuning the parameters for the multi-view task. This is possible because our
multi-view approach has the same architecture as the single-view network and the handling
of the multiple input views is done through reshaping, batching and concatenating of the
data. This is a major advantage of our approach. Nevertheless, fine-tuning on the limited real
frames of the YCB-Video dataset is still difficult, and further improvements might be made
if a larger dataset would be available. CosyPose [20] does not suffer from this drawback,
as CosyPose can be trained on single views and tested on multiple views with the same
network configuration.

3 views 5 views

CosyPose[20]
ADD-S 92.29 93.26
ADD(S) 87.66 88.80

PVN3D-MV[8]
ADD-S 92.98 91.06
ADD(S) 87.72 84.03

FFB6D-MV[Ours]
ADD-S 95.16 95.29
ADD(S) 91.37 91.58

Table 5.9.: Quantitative comparison between CosyPose, multi-view PVN3D and multi-view
FFB6D on the YCB-Video dataset. The multi-view frames are randomly selected
from the same sequence. The ADD-S and ADD(S)-AUC are reported. The best
results for ADD-S-AUC and ADD(S)-AUC are highlighted in bold.

Our novel multi-view approach outperforms the current state-of-the-art for multi-view
6D Pose Estimation on the YCB-Video dataset by a large margin (see Tab. 5.9). However,
using five instead of three views does not improve results very much. This is because the
sequences in YCB-Video are very short and do not offer many different viewing angles.
For the multi-view PVN3D model, for which we employ the same training strategy as for
multi-view FFB6D, the accuracy deteriorates for five views compared to three views. We
assume this effect has two causes. On the one hand, PVN3D has more parameters and
therefore might need more training samples to find the optimal weights. On the other hand,
using five views reduces the number of training samples drastically because more frames
are grouped into a single multi-view training sample.

Additionally, the comparison with CosyPose is not quite fair as CosyPose only operates on
RGB data while FFB6D and PVN3D use RGB-D data. Our multi-view adaption of FFB6D
also assumes known camera poses, something that CosyPose does not assume. This means
that CosyPose has to solve a much harder task than our approach.
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Chapter 5. Experiments

Symmetry
FFB6D already achieves impressive results on YCB-Video even on symmetric objects. One
reason for this might be the novel SIFT farthest point sampling keypoint selection process.
Still, the performance on symmetric objects is lower compared to non-symmetric objects
in the YCB-Video dataset. To make a fair comparison with the original FFB6D model, we
trained our symmetry-aware model with the same hyperparameters and the same training
procedure. We are able to outperform the standard FFB6D on all objects that are defined as

FFB6D[12] Symmetry-Aware FFB6D
024 Bowl 95.04* 96.39
036 Wood block 92.61* 95.17
051 large clamp 96.70* 96.86
052 extra large clamp 94.28* 95.30
061 foam brick 97.31* 97.60

Table 5.10.: Quantitative comparison between standard FFB6D and FFB6D trained using the
symmetry-aware loss function. The evaluation is limited to the symmetric classes
in the YCB-Video dataset.The ADD-S and ADD(S)-AUC are reported. (*paper
results deviate from published checkpoints)

symmetric and achieve similar results for all non-symmetric objects. For the large clamp
and foam brick, we observe marginal improvements over the standard network. However,
for the bowl, wood block and extra large clamp we see big improvements. Especially for
the wood block, we see the largest improvements. The wood block is very similar to the
T-Less_27 object from the SCAPE 2 dataset. Both have a discrete rotational symmetry of
order n = 4. It appears that these squarish objects benefit most from our symmetry-aware
training because a wrong estimation of the rotation misaligns the meshes drastically.

(a) Standard training (b) Symmetry-aware training

Figure 5.10.: Qualitative comparison for standard (a) and symmetry-aware (b) FFB6D on
the 036 Wood block object. The sample is selected from the YCB-Video test set.
The mesh of the wood block object is projected into the image space using the
camera intrinsics and predicted poses.

In Fig. 5.10 we have evaluated this qualitatively for the wood block object. The pose estimation
definitely improves with the symmetry-aware training. However, the pose prediction is not
perfect using the symmetry-aware training. A reason for this might be that the wood block
in the scene is partially occluded, which makes the pose prediction harder.
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6. Conclusion

The goal of this thesis was to utilize multiple views for the 6D Pose Estimation to make 6D
Pose Estimation more accurate in complex scenes with multiple objects and many occlusions.
Additionally, we aimed to tackle one of the biggest challenges in 6D Pose Estimation, which
is symmetric objects, by introducing a novel symmetry-aware training that explicitly handles
object symmetries.

For this, we propose a novel multi-view architecture that supports multiple RGB-D frames,
based on the current state-of-the-art network for single-view pose estimation called FFB6D.
To show the effectiveness of our approach, we evaluated both the single-view and multi-view
network on three custom synthetic datasets, designed to highlight the advantages of a
multi-view architecture. The experiments show that although FFB6D claims to handle severe
occlusions [12], our multi-view approach is able to outperform the single-view results by
a large margin in highly cluttered scenes with many occlusions. On the SCAPE 2 dataset,
the single-view model is able to achieve similar results to our multi-view architecture with
the ideal view. However on the SCAPE YCB dataset, even on the best view, the single-view
network is outperformed by the multi-view network by a large margin. Additionally, we
show that our proposed architecture is robust towards a noisy fusion when the camera poses
are not perfectly known. Furthermore, our novel multi-view architecture is robust towards
a changing camera set-up at test time, including a changing amount of cameras which we
show on the SCAPE YCB2 dataset.

We also compare against a multi-view variant that uses a similar approach to our multi-view
fusion method on an older 6D Pose Estimation architecture. We are able to outperform the
network on the standard ADD-S-AUC and ADD(S)-AUC metric on the SCAPE YCB dataset.
But we achieve only slightly better results on the ADD(S)<2cm metric, as well as on the
SCAPE 2 dataset in general.

Further, we adapted the public YCB-Video dataset to support multiple views. However,
the YCB-Video dataset does not offer diverse views and many occlusions, nevertheless
our approach does outperform CosyPose which is the current state-of-the-art network for
multi-view pose estimation.

In addition to our multi-view extension, we designed a symmetry-aware loss function
used for the training of the 3D keypoint estimation task within the FFB6D network. The
improved loss function prevents the network from learning keypoints that lie exclusively
on the symmetric axis. We outperform our single-view and multi-view results on SCAPE 2
with our symmetry-aware training, especially for the rotational symmetric objects. On the
YCB-Video dataset, we are able to confirm our improvements for real world data.
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Chapter 6. Conclusion

Future Work
Although we have achieved great results with this master thesis, there are still improvements
to be made to bring 6D Pose Estimation methods to the standard required for robot grasping
and object manipulation.

We already conducted small experiments on the YCB-Video dataset with our novel multi-view
approach. However, we believe that the YCB-Video dataset is not ideal to show our advances
with our multi-view architecture. The low number of occlusions in each scene combined
with only a limited range of different viewing angles limit the advantages of a multi-view
approach. We believe that a larger non-synthetic dataset that is designed for multi-view pose
estimation is needed to demonstrate the advances that we have made for 6D Pose Estimation.

Further, we would like to explore a fairer comparison with CosyPose. For this, we would
like to extend CosyPose to RGB-D data. There are a couple of ways of how to approach this.
The most common approach to lift an RGB-only method to RGB-D data is to apply ICP to
the 6D Pose Estimates. However, a more interesting approach would be to exchange the first
stage of CosyPose with the single-view FFB6D network to generate pose candidates for each
view. For a completely fair comparison, it would be necessary to fix the camera poses in the
joint object-camera-pose optimization step in the last stage of CosyPose.

We would also like to solve some other limitations that FFB6D and by extension our multi-
view variation of FFB6D has. There is for instance the limitation of only a single instance of
each object being allowed in each scene, limiting the network to only solve the SiMo task. A
simple way to resolve this limitation is to adapt the center prediction module. Instead of
allowing only one center prediction per object class within the mean shift clustering, it is
possible to handle multiple clusters to distinguish multiple instance of the same object.

Another topic that would be interesting to explore would be to replace the whole least-
squares-fitting with a trainable network. The idea is to model the uncertainty of the keypoints
better to finally predict pose estimates better. Here, more than eight keypoints that are optimal
for the least-squares-fitting could be valuable as well because the network could attend to
the uncertainty of the estimated keypoints and focus on keypoints with high certainty, but
also take the low certainty keypoints into account.
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A. SCAPE YCB ADD(S)-AUC

Figure A.1.: Individual AUC comparison of multi-view FFB6D and multi-view PVN3D for
all objects from the SCAPE YCB dataset.
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