Language-driven Scene Understanding
with 3D Scene Graphs

Sebastian Koch
Ulm University and Bosch Center for Al

uulm ® BOSCH

Huawei Munich Research Center
Feb 06, 2024




Who Am |?

* PhD student since April 2022

* Timo Ropinski

e Pedro Hermosilla

« Sponsored by Bosch
« Narunas Vascevikius

e Mirco Colosi

RSIT,
> ?"(;, umversr[at ‘

»
)
v}
2
&
OJ'OONaUOG
TECHNISCHE
UNIVERSITAT
WIEN
Vienna|Austria

M

kochsebastian.github.io



kochsebastian.github.io

Motivation

Robotics

Language-driven 3D scene understanding enhances AR/VR and robotics with richer context and actionable interaction.



3D Scene Representations

3D Semantic Instance Segmentation 3D Object Detection

=== Relationships and object interactions are often disregarded
=== [Xxpensive to store and difficult to directly use for downstream tasks like planning

[1] Misra et al.: An End-to-End Transformer Model for 3D Object Detection, ICCV'2021
[2] Schult et al.: Mask3D: Mask Transformer for 3D Instance Segmentation, ICRA'2023 4




Why do relationships matter?

Chair close to cabinet

Bring me the chair
close to the cabinet

(& 3D Scene Graphs can model
* Objects « Attributes
« Relationships « Etc.
« Affordances
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Language & 3D Scene Graphs

Challenge: Learning 3D Scene Graphs needs a lot of annotated data

Contrastive
E § E pre-training
standing on o0
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Lang3DSG Approach
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Lang3DSG Results

3D Scene Graph prediction with fine-grained labels
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How does point cloud pre-training compare to a

supervised method?
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Lang3DSG Results
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Lang3DSG Results

3D Scene Graph prediction with fine-grained labels

close by [close by, behind of]
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How does language-based SG pre-training

compare to a point cloud pre-training?
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Language-based downstream applications
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Take aways

Lang3DSG pre-training achieves SOTA 3D Scene Graph prediction.
Long-tail relationships are recognized exceptionally well.
Language alignment enables zero-shot applications.

Fine-tuning on predefined classes is still needed!
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Motivation

Wall

S
|_> > .
How are — ~_> & _

TV and Wall related?

Research Questions
(£ Can we use 2D foundation models for 3D relationship reasoning?

(= How can we distill knowledge from a 2D model into a 3D model?

pasiaradng

"qBIOA-UdO

Limited/Pre-defined Object &
Relationships labels

?

15



Open-Vocabulary 3D Understanding

Multi-view Feature Fusion ' 2D-3D Ensemble

“brown chair”
“end table”
“floor rug”

[ il ] Arbltrary text queries

} 52D

Goal
3D Open-Vocabulary Semantic Segmentation

Requirements
« 3D point cloud
« Multi-View Images
» Depth + Pose

f2D3D

—!*O Inference

s|quiasuy
ae-az

Insight
2D CLIP features transferable using projection Input 3D Geometry
& cosine-similarity distillation © Cosine Siriariy

Feature Pooling

[1] Peng et al.: OpenScene: 3D Scene Understanding with Open Vocabularies, CVPR'2023
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CLIP = Bag-of-words representation

Extensive Study here:

\

A scene of a Text
guitar >

A 4

bed. Encoder

\ 4 \ 4 \ 4 \ 4 CLlP
T, T, T, Ty !
the grass is eating the horse
Image o
Enco?ier — | L*T, | 1*T, | 14*T, 1 *Ty the horse is eating the grass

When and why vision-
language models behave like
bags-of-words, and what to
bed.

Insight: \While good for object classification, CLIP does not understand relationships

[1] Radford et al.; Learning Transferable Visual Models From Natural Language Supervision, ICML'2021




Core |dea

Question: \Vhen contrastive models like CLIP won't work, what about multi-modal LLMs?

What objects are in
the scene and what is

their relationship?

Generative VLM

s

Image
Encoder

Idea: Condition the LLM output with a 3D Scene Graph backbone



Open3DSG: A closer look
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Open-Vocabulary 3D Scene Graphs

nextto .
garbage bin

How does our open-vocabulary method compare to a supervised method?
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Scene Graph Scene Reasoning

Attribute Querying
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padded
dining chair

tv doorframe

mounted above

/}7}‘_

6
I N\

wall $

positioned next to

©
2
2\
o
3
%
)

I
desk placed next tOgarbage bin

wooden metal

wall pillow

carpet

next to other

resting against

pillow carpet
Can you lift [x] from [y]?

wall

pillow

21



Take aways

« Open3DSG enables open-vocabulary reasoning for objects and relationships in
3D scenes.

* LLM-based predictions outperform CLIP-based queries, enabling more accurate
and flexible scene understanding.

« Zero-shot inference supports attributes, affordances, and task-specific
interactions, without requiring manual annotations.

* No Ilagelled data is needed for training, reducing annotation costs and improving
scalability.

* Requires 2D-3D aligned datasets for effective training and scene grounding.



RelationField
Relate Anything in Radiance Fields

under review
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Motivation

Distillation (OpenScene) Mask-Lifting (OpenMask3D)
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(4) Open-Vocabulary 3D Instance
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v« ¥ Query: "watch a movie" 4% [
Proposal [:> i > J 5

Network

selecting

N (3) Mask-Feature Computation for Each Instance

(= Training requires aligned 2D-3D & Separate training of 2D & 3D backbones
& Inference can be done using 3D alone = Inference needs aligned 2D & 3D data

< Question: Can we train on 2D images alone but reason about 3D scene graphs & relationships?

[1] Peng et al.: OpenScene: 3D Scene Understanding with Open Vocabularies, CVPR'2023
[2] Takmaz et al.; OpenMask3D: Open-Vocabulary 3D Instance Segmentation, NeurlPS'2024




Radiance Fields

5D Input
Position + Direction

Output

Color + Density
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L 3D representation

E¢ Supervised by 2D images, perfect for 2D-3D distillation

e T

>
>

Ray Distance

(¢) (d)

[1] Mildenhall et al.: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV'2020
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Feature Fields

Affordance

e Cleaning

Composition Spatial

RelationField
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RelationField
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3D Relationship Reasoning

Interactive Relationship Extraction

Living room "same as" "lying on" "standing on"

Scene Graph Construction

Object Semantics + Relationship Semantics
= 3D Scene Graph

28



Take aways

* RelationField enables 3D relationship reasoning from 2D
observations.

* Inter-object relationships are defined as ray pairs, capturing spatial
and semantic interactions between objects.

* RelationField encodes powerful foundation model knowledge,
making relationships queryable in near real-time.

* RelationField models complex and causal relationships, enabling
diverse downstream applications.



DELTA

Decomposed Efficient Long-Term Robot Task
Planning using Large Language Models

ICRA 2025
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llche Georgievski Marco Aiello

00000

000000

: .:0.0‘0‘0’..:
”0.0 AAA 0.0”
00t NN e e = = L

LD 0 ok DS
LR L D

L Mk
¢’..0’0.Q.0.0..’¢
L 0,’ LA ... *

. 0000‘0’0 et

00000000

ooooo

RSITA
SHRR un iversitat ‘
A e

M



Current Challenges in Planning

Even simple task like bring me a coffee require complex planning

Go to the kitchen

Get cup from cabinet

Turn on the coffee-machine
Make coffee

Go to living room

Gkl WD~

amm Symbolic Planners often need precise information about objects,
affordances, actions, etc.

=== Symbolic Planners need a lot of planning time for complex
observation & action spaces

#= LLM Planners enable efficient, intuitive planning with dynamic sub-goals and chain-of-thought
reasoning but often lack real-world grounding.

34



DELTA Approach

1. Domain
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Generation

Domain Description

2. Scene Graph |

Pruning
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-l- Environment grounding using PDDL

+ Structured observation from 3D Graph

: LLM
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successful plan execution
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DELTA Take-aways

» 3D Scene Graphs lead to improved planning success
« LLM-based Sub-goals and SG pruning lead to faster planning

Planning Success Planning Time
98% =\ =
[5) AL o
70% 80% 3
— 2 | \:
Q o— ®©
£ || < 2| \2
|| 2 S 8|\
(C a 1T (aa]
(a] a
0% [DELTA]
Easy Hard Planning Time

DELTA w/ 3D scene graph representation
Baseline w/o 3D scene graph representation



Conclusion & Summery



Take-home message

 Relationships are very important for holistic 3D
Scene Understanding.

« 3D Scene Graphs naturally connect 3D environments
with language.

« Open-vocabulary Scene Graphs enable flexible,
interactable representations for diverse use cases.

What is the best way to interact with a 3D scene/interact with LLMs?

38
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