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Motivation

Robotics

W
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Language-driven 3D scene understanding enhances AR/VR and robotics with richer context and actionable interaction.



3D Scene Representations

3D Semantic Instance Segmentation 3D Obiject Detection

=== Relationships and object interactions are often disregarded
=== EXxpensive to store and difficult to directly use for downstream tasks like planning

[1] Misra et al.:An Endto-End Transformer Model for 3D Object Detection " KEE X X4 2 4 3
[2] Schult et al.:Mask3D: Mask Transformer for 3D Instance SegmentationKET C 34 2 4 4




Why do relationships matter?

Chair close to cabinet

Bring me the chair
close to the cabinet

& 3D Scene Graphs can model
A Obijects A Attributes
A Relationships A Etc.

A Affordances
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Scene Graph
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@) Lang3DSG

Language-based contrastive pre-training for
3D Scene Graph prediction
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Language & 3D Scene Graphs

Challenge: Learning 3D Scene Graphs needs a lot of annotated data

Contrastive
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Lang3DSG Approach
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Fine-tuning on pre-defined classed needed!



Lang3DSGResults

3D Scene Graph prediction with fine-grained labels
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How does point cloud pre -training compare to a

supervised method?
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Lang3DSG Results
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Lang3DSGResults

3D Scene Graph prediction with fine-grained labels
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How does language-based SG pre-training

compare to a point cloud pre -training ?
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Language-based downstream applications
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Take aways

ALang3DSG pre-training achieves SOTA 3D Scene Graph prediction.
ALong-tail relationships are recognized exceptionally well.
ALanguage alignment enables zero-shot applications.

AFine-tuning on predefined classes is still needed!
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OpenVVocabulary 3D Scene Graphs with
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Motivation

Wall

S
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How are — ~_> & _

0
TV and Wall related? TV

Research Questions
(£ Canwe use 2D foundation models for 3D relationship reasoning?

(= How can we distill knowledge from a 2D model into a 3D model?

pasiaradng

"qBIOA-UdO

Limited/Pre-defined Object &
Relationships labels

?
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OpenVocabulary 3D Understanding

Multi-view Feature Fusion ' 2D-3D Ensemble
Goal H—— _

3D OpenVocabulary Semantic Segmentation

“brown chair”
“end table”

[
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: “floor rug”
. : Arbltrary text queries
Requirements ! [ ]
A 3D point cloud -
A Multi-View Images :Dl—» T f2D3D
3D

|
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Insight - |
2D CLIP features transferable using projection Input 3D Geometry !
& cosine-similarity distillation © Cosine Similarity

Feature Pooling

[1] Peng et al. OpenScene 3D Scene Understanding with Open Vocabularies”™ EXRT X4 2 4 5




CLIP = Bagof-words representation

A scene of a
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A scene of a guitar
bed.

X

Extensive Study here:

the grass is eating the horse
the horse is eating the grass

When and why vision
language models behave like
bags-of-words, and what to
doabout it?T ICLR 2023

Insight : While good for object classification, CLIP does not understand relationships

[1] Radford et al.: Learning Transferable Visual Models From Natural Language Supervision” KEONX 4 2 4 3
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Core Idea

Question:Yj gp" egpvtcuvkxg"oqgqfgnu" nkmg-‘mBaddlKIBMSY qp XV

What objects are in
the scene and what is

their relationship?

Generative VLM

s

Image
Encoder

Idea: Condition the LLM output with a 3D Scene Graph backbone
18



Open3DSG: A closer look

Training Testing
chair, table, bed
bed, floor %oﬂ\ .
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Aligned 2D frames
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Relationship?
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Relationship? Queries

L£=1-cos(FPP FP) 4+ 1 — cos(F?P, FP)



OpenVocabulary 3D Scene Graphs

dining chair

extto .
garbage bin

How does our open-vocabulary method compare to a supervised method?
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Scene Graph Scene Reasoning

Attribute Querying padded

dining chair tv doorframe

mounted above

p
0};00 te Qg
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wall $

positioned next to

I
desk placed next tOgarbage bin

wooden metal

pillow wall pillow wall

resting against

next to other

carpet pillow carpet pillow
Can you lift [x] from [y]?
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Take aways

AOpen3DSG enables openvocabulary reasoning for objects and relationships in
3D scenes.

ALLM-based predictions outperform CLIP -based queries, enabling more accurate
and flexible scene understanding.

A_Zero—shot Inference supports attributes, affordances, and task -specific
Interactions , without requiring manual annotations.

ANo labeled data is needed for training , reducing annotation costs and improving
scalability.

ARequires 2D-3D aligned datasets for effective training and scene grounding.



RelationField
Relate Anything in Radiance Fields

under review
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Motivation

Distillation ( OpenScene) Mask-Lifting (OpenMask3D)
Miuilti-view Faatiira Fiicinn "' 9N-2N Encamhlia ‘ ) @/] T
> Segmentation
3D Mask | ‘!' Query: "watch a movie" ’\ :,

Proposal :> ‘ g

Network

(72:‘,* Class Agnostic Instance Mask Proposals

~N
LN Y:: szus
W cur| o fmask
- | ) omem
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2D segment
& crop )\ CLIP features /|

selecting

top k views, features
R )

8
queryable features for each
3D instance mask

posed RGB-D frames mask;.
(3) Mask-Feature Computation for Each Instance

= Training requires aligned 2D3D & Separate training of 2D & 3D backbones
& Inference can be done using 3D alone = Inference needs aligned 2D & 3D data

= Question: Canwe train on 2D images alone but reason about 3D scene graphs & relationships?

[1] Peng et al. OpenScene 3D Scene Understanding with Open Vocabularies”™ EXRT X4 2 4 5
[2] Takmaz et al.: OpenMask3D: Opervocabulary 3D Instance Segmentation " Pgwt KRUX4 2 4 6
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Radiance Fields

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
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NeRF
L 3D representation

®¢ Supervised by 2D images, perfect for 28D distillation

[1] Mildenhall et al..NeRE Representing Scenes as Neural Radiance Fields for View Synthesis® GE E X

(d)

X4242
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Feature Fields

Composition Compare Spatial Affordance

Same object class

RelationField

==p Rel. feat.
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RelationField

Radiance field equation:
BERT embedding for feature GPT-40 + SoM for mask-aligned 50 1 200 training
supervision and concept relationship captions images per scene

_ generalization
Loss function:



