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Abstract

3D scene graphs are an emerging 3D scene representa-
tion, that models both the objects present in the scene as
well as their relationships. However, learning 3D scene
graphs is a challenging task because it requires not only
object labels but also relationship annotations, which are
very scarce in datasets. While it is widely accepted that
pre-training is an effective approach to improve model per-
formance in low data regimes, in this paper, we find that
existing pre-training methods are ill-suited for 3D scene
graphs. To solve this issue, we present the first language-
based pre-training approach for 3D scene graphs, whereby
we exploit the strong relationship between scene graphs and
language. To this end, we leverage the language encoder of
CLIP, a popular vision-language model, to distill its knowl-
edge into our graph-based network. We formulate a con-
trastive pre-training, which aligns text embeddings of re-
lationships (subject-predicate-object triplets) and predicted
3D graph features. Our method achieves state-of-the-art re-
sults on the main semantic 3D scene graph benchmark by
showing improved effectiveness over pre-training baselines
and outperforming all the existing fully supervised scene
graph prediction methods by a significant margin. Further-
more, since our scene graph features are language-aligned,
it allows us to query the language space of the features in a
zero-shot manner. In this paper, we show an example of uti-
lizing this property of the features to predict the room type
of a scene without further training.

1. Introduction
In recent years, 3D scene graphs began to emerge as a
new graph-based 3D scene representation that has seen a
wide range of applications in computer vision and robotics
[1, 11, 23, 36, 47, 53, 57, 58]. In this field, 3D scene
graphs are powerful tools since they allow a compact and
straightforward formulation to model both objects in the

Figure 1. Lang3DSG key idea. Lang3DSG exploits the natural
relatedness of language and 3D scene graphs by pre-training on
contrastive language supervision.

scene and their semantic relationship. In fact, they allow for
a more high-level description of a 3D scene, as compared
to conventional scene representations, such as 3D object
detections or segmentation. Due to the encoded high-level
information, 3D scene graphs can be used to solve various
tasks, such as scene understanding or robot interaction, that
conventional 3D models struggle with due to their limited
understanding of scene semantics. However, predicting 3D
scene graphs comes with several challenges, such as noisy
and incomplete sensor data, as well as ambiguous object
and relationship descriptions. Furthermore, while large
training data sets are readily available for conventional 3D
scene representations, training data for learning 3D scene
graphs is much scarcer because relationships are harder to
annotate.

A frequent approach to deal with the challenges of low
data regimes is to facilitate pre-training methods, which
allow utilizing the existing data more efficiently [6, 21].
While pre-training is popular in point cloud learning, our
pre-training analysis for 3D scene graphs indicates that it
is not sufficient for this particular case (see Sec. 3). While
we could see an improvement in learning object predictions,
pre-training did not lead to improved results when predict-
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ing object relations. We hypothesize that this lack of re-
lationship understanding originates from the poor utiliza-
tion of context cues in the existing pre-training approaches.
Such context information can be well represented and prop-
agated using a graph neural network. Therefore, one of
our key insights is to design a pre-training approach with
a graph structure in mind.

Our second key insight is that scene graphs are inher-
ently related to natural language. In language, a subject, a
predicate and an object are the fundamental building blocks
of a sentence and in scene graphs, the same triplet forms a
relationship represented by two nodes and an edge. Recent
advancements in large language models demonstrate their
ability to abstract vast semantic knowledge in the embed-
ding space. Aligning this embedding space with different
modalities such as vision resulted in a paradigm shift in
many scene understanding tasks [24, 41, 44]. Inspired by
this progress, we propose to leverage the knowledge of the
pre-trained language models for 3D scene graph prediction
by formulating a language-based contrastive pre-training.

Thus, we present the following contributions:
• We propose a novel language-based contrastive pre-

training for the downstream task of 3D scene graph pre-
diction by exploiting the knowledge of language models.

• We show that our pre-training improves 3D scene graph
prediction of a simple graph neural network to de-
fine a new SOTA by outperforming the existing fully-
supervised methods.

• We demonstrate further capabilities of our approach, by
exploiting the language-aligned scene graph features to
predict room types in a zero-shot manner.

To the best of our knowledge, we are the first to investigate
and propose an approach for 3D scene graph pre-training.

2. Related Work
3D scene graph prediction. A 3D scene graph models a
scene as a graph by representing objects in the scene as
nodes and relationships between objects as edges connect-
ing two nodes. Scene graphs were first proposed in the 2D
image domain by Johnson et al. [26] but have been adapted
to 3D first by Armeni et al. [1], as a hierarchical structure
to connect buildings, rooms and objects. Wald et al. [53]
were the first to introduce a 3D semantic scene graph
dataset focused on semantic relationships between objects.
This dataset is built on top of the large-scale 3D dataset
3RScan [52] with over one thousand 3D scans. Based on
this dataset, some subsequent works focused on expanding
the common principles from 2D scene graph prediction to
3D [53, 67]. Other works focused on utilizing 3D scene
graphs for image and scene retrieval [53], 3D scene recon-
struction [28], generation and manipulation [11], alignment
of 3D scene graphs as well as registration of scans [47] and
change forecasting within the 3D scene [36]. Some ap-

proaches investigated the construction of 3D scene graphs
during dynamic explorations of the scene with RGB-D [57]
or RGB cameras [58]. Finally, other works focused on
the improvement of the 3D scene graph prediction with ad-
vanced message passing and graph convolutions [67], trans-
formers [38] using pre-trained oracle models [56]. Instead,
our approach focuses on a novel pre-training strategy lever-
aging the unique similarity between scene graphs and lan-
guage.
Pre-training for 3D scene understanding. In the 2D do-
main, it is common practice to use backbone networks pre-
trained on ImageNet [9], or pre-trained using other repre-
sentation learning techniques [2, 18, 20, 40, 50, 60]. In-
spired by the progress in the 2D scene understanding, re-
cent works explore to adapt pre-training [5, 17, 46, 48, 55]
on the 3D object-centric datasets such ShapeNet [3] and
ModelNet [59]. However, Xie et al. [61] showed empiri-
cally that pre-training on datasets like ShapeNet [3] seem
to be ineffective for scene-level 3D perception tasks such
as 3D segmentation or 3D object detection. This moti-
vated other works to investigate 3D representation learning
based on self-supervised contrastive learning [6, 21, 22, 61,
69]. However, so far none of these works has considered
3D scene graph prediction as a downstream task for pre-
training.
Language-based 3D scene understanding. In recent
years natural language has become an important part in
2D scene understanding. The recent advances of large
vision-language models such as CLIP [44], ALIGN [25]
and follow-up works [30, 31, 66, 68] have made a paradigm
shift in scene understanding from images enabling open-
vocabulary object classification, detection and semantic
segmentation [14, 16, 19, 29, 34]. This progress ignited
interest in distilling the knowledge of 2D vision-language
models into 3D representations [12, 27, 41, 63, 64].
Rozenberszki et al. [45] demonstrate the usefulness of
semantically rich language features by grounding the 3D
representation learning with language. They successfully
use this idea for language-based pre-training to tackle the
long-tail distribution problem in 3D semantic segmentation.
Inspired by this we demonstrate how to leverage the vast
semantic knowledge from language models in 3D scene
graph pre-training.

3. 3D scene graph pre-training

3.1. Point cloud-based scene graphs pre-training

Latest improvements in pre-training methods focused on
point clouds yield to positive results for various applica-
tions such as segmentation or object detection [6, 7, 21, 22,
45, 61, 69]. However, the domain of 3D scene graphs has
received little attention in pre-training studies. To fill this
gap, we conduct a pilot study presented in Tab. 1, exploring
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Figure 2. Overview of our Lang3DSG pre-training framework. Our method takes as input a class-agnostic segmented point cloud and
extracts point sets of objects and pairs of objects (a). The point sets are passed into a PointNet backbone to construct an initial feature graph
(b). Using a GCN, the features in the graph get refined (c) and node, edge and node-edge-node triplets are projected into the language
feature space (d). Using a contrastive loss, we align the 3D graph features with the CLIP embeddings of the scene description (e).

the effectiveness of point cloud pre-training for 3D scene
graph prediction. In this study, we take two recent point
cloud-based pre-training methods STRL [7] and DepthCon-
trast [69] that open-sourced pre-trained PointNet++ [43]
backbones trained on ScanNet [8] and fine-tune them for
scene graph prediction by adding two prediction heads for
objects and predicates. Additionally, we establish a sim-
ple graph-based baseline inspired by the work of Wald et
al. [53] as a reference.

For evaluation, we employ top-k recall metrics for ob-
jects and predicates, where higher scores indicate better
performance. Detailed information regarding the metrics
used in this study can be found in Sec. 4.1. Our find-
ings in Tab. 1 demonstrate that the pre-trained methods per-
form well on object prediction compared to the graph-based
baseline. However, the predicate predictions do not show
the same improvement with pre-training compared to the
graph-based baseline. This indicates that having a graph-
based backbone is essential for predicate prediction and
that existing pre-training strategies are ineffective for scene
graphs since they do not encode graph structures.

This result motivates us to design a pre-training tailored
for scene graph prediction with a graph backbone in mind.
In the following section, we will introduce our architectural
setup as well as our 3D scene graph pre-training approach.

3.2. Language-based scene graph pre-training

Since a graph-based backbone seems important for scene
graph prediction and the success of pre-training as con-
cluded from our pilot study, we first define our graph-based
backbone. We start by describing the feature extraction and
graph construction methodology to embed a 3D scene into
an initial feature graph. Then, we continue with a simple
graph convolutional network (GCN). Furthermore, we spec-
ify the modules for contrastive self-supervised pre-training.
Feature extraction and graph construction. For the first
step of our approach, we build an initial graph G = (N , E)
from a generic scene s, where N describes the set of objects
and E describes the relationships of the scene. This step in-

Object Predicate

R@5 ↑ mR@5 ↑ R@3 ↑ mR@3 ↑

Graph-baseline 0.63 0.30 0.94 0.57
STRL [7] 0.75 (+0.12) 0.35 (+0.05) 0.94 (-0.00) 0.50 (-0.07)
DepthContrast [69] 0.77 (+0.14) 0.36 (+0.06) 0.94 (-0.00) 0.51 (-0.06)

Table 1. Comparison among point cloud-based 3D scene
graphs pre-training. We conduct a pilot study comparing ex-
isting point cloud-based pre-training studies with a graph baseline
without pre-training.

volves generating a class-agnostic instance mask M to ex-
tract instances i from the point cloud P using the mask Mi

from an off-the-shelf instance segmentation method such as
Mask3D [49]. Those masks are used to extract from the
scene point cloud P a subset of points Pi belonging to the
object instance i, using the relative mask Mi. From Pi

we also produce the object bounding box Bi and discard
any predicted class labels. Alternatively, when available,
ground truth instance annotations can be used to extract the
needed instances. Each point set Pi including its color in-
formation is fed into a shared PointNet [42] to extract fea-
tures ϕn for each object node.

To generate edge features ϕp, we use every instance
pair ⟨i, j⟩ ∈ ∥M∥ × ∥M∥ to get the combined point set
Pij belonging to the union of their respective bounding
boxes Bij = Bi ∪ Bj . Note that, we use the bounding box
union to include also points pk around both objects, which
might introduce further contextual information. Before
feeding every point set Pij and its color information into
a second shared PointNet to extract the edge features ϕp,
we concatenate it with a point-wise mask equal to 1 if the
point corresponds to object i, 2 if the object corresponds to
object j, and 0 otherwise.
Encoder. From the extracted features ϕn and ϕp, we
construct an initial feature graph where every node con-
tains only local features describing the object and each
edge contains only feature information about a pair of ob-
jects. However, this information lacks global scene con-
text, which is necessary for predicting complex object re-

3



lationships. To address this issue, we employ a graph con-
volutional network with message passing to propagate in-
formation through the graph such that each node and edge
have contextual information about its nearest neighbors. To
this purpose, we arrange the nodes and edges as triples
tij = ⟨ϕn,i, ϕpij , ϕn,j⟩. Every GCN layer lg propagates
information through the graph in three steps with a message
passing procedure similar to [53]. First the triplet tij is fed
into a MLP g1(·)(

ψ
(lg)
n,i , ϕ

(lg+1)
p,ij , ψ

(lg)
n,j

)
= g1

(
ϕ
(lg)
n,i , ϕ

(lg)
p,ij , ϕ

(lg)
n,j

)
(1)

where ϕ(lg+1)
p,ij is the updated edge feature and ψ represents

the incoming features for the nodes i and j. Using an aggre-
gation function, the incoming node features are aggregated
in a second step. We choose the average function as a suit-
able aggregation function

ρ
(lg)
n,i =

1

Ni

 ∑
k∈Ri

ψ
(lg)

n,k +
∑
k∈Rj

ψ
(lg)

n,k

 (2)

where Ni denotes the number of edges connected to node i,
and Ri and Rj are the set of nodes connected to node i and
node j respectively.

Finally, the aggregated node features ρ(lg)n,i are passed
into a second MLP g2(·) adding a residual connection:

ϕ
(lg+1)
n,i = ϕ

(lg)
n,i + g2

(
ρ
(lg)
n,i

)
. (3)

This process is repeated for k layers with which the recep-
tive field of each node grows to finally get the refined fea-
tures ϕ(lk)n,i , ϕ

(lk)
p,ij , ϕ

(lk)
n,j containing contextual information of

their neighbors and beyond.
Projection heads Following Grill et al. [15], we propose
three projector heads that project graph-based features into
a high-dimensional feature space that matches the dimen-
sionality D of our text encoder features.

The three 3-layers MLP project into the projection space
the features generated after performing k iterations of graph
convolutions. The first projector p1(·) projects only the
node features, the second p2(·) only the edge features, while
we feed the third projector p3(·) with the concatenated fea-
tures for each triplet in the graph to get a singular triplet
feature representing the entire relationship.

fn,i = p1
(
ϕ
(lk)
n,i

)
, fp,ij = p2

(
ϕ
(lk)
p,ij

)
,

ftriplet,ij = p3
(
ϕ
(lk)
n,i ⊕ ϕ

(lk)
p,ij ⊕ ϕ

(lk)
n,j

)
.

(4)

Text Encoder We leverage a pre-trained language model
to map semantic relationship descriptions to text features.
For this, we choose CLIP [44]. CLIP has been shown to
have excellent visual understanding capabilities thanks to
its vision-language pre-training. Note that our approach

is agnostic to the choice of language model, but we found
CLIP’s representations formed by its multi-modal training
well-suited to our relationship pre-training. During pre-
training, we keep the text encoder frozen.

We provide three types of text prompts to our text en-
coder matching the three projected features from our 3D
graph network. The first query contains only the object
names, the second one provides only the predicate category
to the text encoder, and the third query consists of the en-
tire relationship in the form of “A scene of a [subject] is
[predicate] a [object]” template.

Each text is then tokenized and encoded to their text em-
beddings f t1, f

t
2, ..., f

t
n ∈ RD where D is the dimensional-

ity of the text representation space. Note that we consider
scene graphs where a pair of objects can share zero, one or
multiple relationships. In case no relationship is present, we
encode the predicate “and” as a neutral predicate to provide
a target text embedding for the edge.

3.3. Language-based pre-training

Contrastive loss. For feature learning, we formulate a con-
trastive objective between the embeddings of the text model
and the predicted 3D graph features by our network. We
adopt the cosine similarity as our distance metric. This
choice is inspired by CLIP [44] which has shown that it is
a good distance metric for multi-modality contrastive learn-
ing as it provides more flexibility compared to l1, l2 or MSE
metrics:

cos(fi, f
t
h(i)) =

fi · f th(i)
|fi| · |f th(i)|

(5)

where h(i) is the semantic text label for node/edge/triplet i.
During training, we differentiate between positive and

negative samples. For the positive samples, our goal is to
maximize the cosine similarity between our 3D graph fea-
ture encoding and the well-structured feature space of the
text model. We do this by minimizing the following term

Lpos =

N∑
i=1

1

|K|
∑
j∈K

1− cos(fi, f
t
h(j)) (6)

where N is the number of nodes/edges and K is the number
of positive samples per node and edge. For objects |K| = 1
since each node only maps to a singular object, but for edges
|K| ≥ 1 because edges in 3D scene graphs can model more
than one predicate/relationship.

Using the negative samples, our goal is to minimize the
cosine similarity between our predicted 3D graph feature
and the text feature

Lneg =

N∑
i=1

1

|M |
∑
j∈M

max
(
0, cos(fi, f

t
h(j))− τ

)
(7)
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where τ is the negative margin and M ⊂ C consists of
negative samples which are a set of labels different from i
with C being the set of class label ids in the dataset.

In literature, negative samples are needed to prevent a
collapse of the embedding space in most contrastive meth-
ods. However, in our case, since we are trying to distill
knowledge from the text model it is not strictly necessary,
but experimentally we found using negative samples im-
proves the learned representation. We provide experimental
evidence for improved representation learning using nega-
tives in the supplementary. Our final language-3D graph
pre-training loss is then:

L = Lpos + λnegLneg (8)

Hard Negative Samples. We found that the selection of
negative samples is very important for the quality of the
learned representation with our contrastive learning. Thus,
we pick the negative samples from the existing label set on
our scene graph dataset.Both for objects and predicates we
sample a random set of labels from the ones available in
our dataset. However, for predicates, we make sure that the
“and” predicate, which represents no relation, is always in
the negative samples if it is not in the positive keys. By
doing so, we enforce the boundary between existing and
non-existing predicates. For negative relationship samples,
we provide hard negatives by taking the true relationship as
our source and modifying objects and predicates individu-
ally such that a negative relationship sample always shares
one object or predicate with the positive sample (see right
side of Fig. 2).

3.4. Scene graph fine-tuning

After pre-training using the text embeddings, the model
needs to be fine-tuned using a supervised loss. This will
allow to predict valid object class labels and predicate cat-
egories for the generated 3D scene graph. To do so, we
discard the projectors and replace them with classification
heads. We propose two classification heads, the first to clas-
sify the nodes in the graph and the second for predicting
predicate labels for each edge. We train the classification
heads using a cross-entropy loss Lobj for the object nodes
and a per-class binary-cross-entropy lossLpred for the pred-
icates:

L = λobjLobj + λpredLpred (9)

Implementation Details. During the pre-training, we fol-
low the approach described in the previous section. We
choose CLIP ViT-B/32 with the published weights from
OpenAI [44] as our text model rather than larger CLIP
models as a good compromise between the text understand-
ing ability and inference speed. The text encoder of the
CLIP ViT-B/32 model provides features of dimensionality
D = 512, which we match with our feature projectors. Dur-
ing the pre-training stage, we train our model for 50 epochs

until convergence, with the Adam optimizer with a learning
rate of 1e-3, linear learning rate decay and a batch size of 6.
We choose the number of negative samples M = 16, which
we randomly sample from 160 object and 27 predicate cat-
egories. We set the negative loss weight to λneg = 1 and
use a negative margin of τ = 0.5.

After pre-training, we proceed with fine-tuning the pre-
trained 3D graph backbone using the available 3D scene
graph labels. We use the same Adam optimizer with a learn-
ing rate of 1e-4, a batch size of 4 and train for 20 epochs.
To ensure a balanced learning of object and predicate rela-
tionships, we set λobj = 0.1 and λpred = 1.0,

4. Experiments
4.1. Experimental Setup

Dataset. To validate the effects of our proposed 3D scene
graph pre-training, we choose to evaluate our method after
fine-tuning on publicly available 3D scene graphs datasets.
The 3DSSG dataset [53] is at the time of writing this paper
the only large-scale 3D dataset that provides semantic 3D
scene graph labels with extensive relationship annotations.
Another 3D scene graph dataset is [1], however, the scene
graphs modeled in this dataset focus on hierarchical struc-
turing and lack semantic relationship labels. In contrast,
the most popular 3DSSG dataset provides semantic graph
annotations with 160 object classes and 27 relationship cat-
egories over more than 1,000 indoor 3D point clouds re-
constructions. These reconstructions are further subdivided
into smaller scene graph splits with up to nine objects per
split, resulting in more than 4,000 samples for training and
evaluation. We follow Wald et al. [52] and use the origi-
nal train/validation splits for training and evaluation. At the
time of writing this paper, 3DSSG is the only large-scale 3D
dataset that provides semantic 3D scene graph labels with
extensive relationship annotations.
Evaluation metrics. For comparison with existing meth-
ods that predict 3D scene graphs without pre-training, we
follow [53, 54, 62, 65, 67] and evaluate object and predi-
cate predictions separately. Additionally, we jointly evalu-
ate subject-predicate-object triples as relationships formed
from two nodes in the graph and their enclosing edge. Since
our approach predicts objects and predicates independently,
we follow Yang et al. [65] and multiply the predicted object
node and predicate edge probabilities to obtain a scored list
of triplet predictions. We rank the triples by their score and
use a top-k recall metric (R@k) [37] for our main evaluation
with existing works. The top-k recall metrics are used since
one edge in the scene graph can represent multiple ground
truth relationships. In our ablations, we additionally pro-
vide results on the less used top-k mean recall metric [4] for
objects and predicates to cope with the high class imbalance
present which affects the dataset, as shown in [53]. Using
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Figure 3. 3D scene graph visualizations for 3DSSG scene splits. Qualitative results of 3D scene graph prediction with Lang3DSG for
three different example scenes. We visualize the top-1 object class prediction for each node and the predicates with a probability greater
than 0.5 for each edge. Ground truth labels are shown in square brackets.

this metric gives better performance indication for under-
represented classes in the dataset.

4.2. 3D scene graph prediction
In Tab. 2 we report the results of our pre-trained model
as described in Sec. 3. We compare against recent
non-pretrained 3D scene graph methods (SGGPoint [67],
3DSSG [53], SGFN [57], Liu et al. [35]) and adapted
2D scene graph methods (MSDN [33], KERN [4], BGNN
[32]). For the 2D scene graph methods, the 2D object de-
tector was replaced by a PointNet-based feature extractor.
Tab. 2 shows that we outperform all existing methods on
the most used 3D scene graph prediction metrics. The ex-
ception is SGFN [57], which reports equal results in pred-
icate predictions for R@5 and slightly better results for
R@3. But especially for object classification, we achieve
to outperform all other methods by a considerable mar-
gin with +7%/+4% improvements to our closest competi-
tor SGFN [57]. For relationship prediction overall, we also
outperform all other scene graph methods by a large mar-
gin for most methods and a considerable margin for SGFN.
Regarding the close performance to SGFN, we hypothesize
that for the predicates, we reached a saturation point on this
dataset with these metrics. This is especially apparent for
the R@5 metric, where we and SGFN both score 99%. In
the following ablation, we try to overcome this saturation
drawback by adopting the mR@k metric which has been
less frequently used in literature. In Fig. 3, we provide qual-
itative examples of our 3D scene graph predictions for a di-
verse set of 3D scenes. We show the top-1 prediction for

Object Predicate Relationship

Method R@5 R@10 R@3 R@5 R@50 R@100

SGGPoint [67] 0.28 0.36 0.68 0.87 0.08 0.10
MSDN [33] 0.61 0.72 0.86 0.94 0.47 0.53
KERN [4] 0.67 0.77 0.83 0.96 0.51 0.58
BGNN [32] 0.71 0.82 0.87 0.94 0.55 0.60
3DSSG [53] 0.68 0.78 0.89 0.93 0.40 0.66
Liu et al. [35] 0.74 0.83 0.90 0.96 0.62 0.68
SGFN [57] 0.70 0.80 0.97 0.99 0.85 0.87
Ours 0.77 0.84 0.96 0.99 0.87 0.89

Table 2. 3D scene graph prediction on 3DSSG. Experimental
results for 3D scene graph prediction on 3DSSG. We report the
top-k recall values for object classification, predicate prediction as
well as relationship prediction. For a fair comparison, all works
use ground-truth class-agnostic instance segmentation.

nodes and predicates that have a prediction score over 0.5.
Our method is able to predict 3D scene graphs with a high
accuracy. Nodes are generally classified correctly, but for a
few incorrectly classified objects, a label that nevertheless
fits the context of the scene is chosen. Additionally, we ob-
serve that small objects with only a few relationships to oth-
ers are more often misclassified, indicating that the graph
nature is beneficial for object classification. Predicates are
also predicted with a high accuracy, still, we observe that in-
correctly predicted edges often coincide with misclassified
nodes which propagate incorrect information.

4.3. Ablations
Pre-training comparison. In Tab. 3, we compare our pre-
training with selected recent point cloud pre-training meth-
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(a) nodes w/o pre-train (b) edges w/o pre-train (c) nodes w/ pre-train (d) edges w/ pre-train

Figure 4. Learned latent representation. We show a comparison of the learned representation for supervised training (a)-(b) and our
CLIP-based pre-training (c)-(d). Using the language-based contrastive pre-training, our latent representation of objects and predicates is
well-structured compared to the model with only supervised training.

Object Predicate

R@5 mR@5 R@3 mR@3

Graph-baseline (w/o pre-train) 0.63 0.30 0.94 0.57
STRL [7] 0.75 0.35 0.94 0.50
DepthContrast [69] 0.77 0.36 0.94 0.51

Ours (no-graph) 0.74 0.37 0.94 0.60
Ours 0.77 0.43 0.96 0.67

Table 3. Pre-training comparison. A simple graph baseline
outperforms existing point cloud-based pre-training methods
on predicate prediction. Our novel pre-training shows high
effectiveness outperforming existing pre-training approaches and
graph baseline.

ods and a graph baseline that has the same graph backbone
as our method but is not pre-trained using our approach.
First, we want to highlight the large improvement between
our method with pre-training and the graph baseline. Us-
ing our pre-training we are able to improve object classi-
fication by +14% for R@5 and +13% for the mR@5 met-
ric. Predicate prediction improves similarly by +2% on the
R@3 metric and +10% on the mR@3 metric. This indi-
cates that our pre-training is especially effective for rare
predicates. The improvements compared to point cloud-
based pre-trainings are also large. While point cloud-based
pre-trainings were able to improve object classification, but
failed to improve predicate predictions for 3D scene graph
predictions, our pre-training is effective for both tasks, out-
performing STRL [7] and DepthContrast [69] with a con-
siderable margin of +7%/+8% on mR@5 object classifica-
tion and +16%/+17% on mR@3 predicate prediction. We
provide an additional ablation to our method with no graph
backbone. This method demonstrates better performance
than the non-pre-trained graph baseline, indicating the ef-
fectiveness of our pre-training. But compared to our method
with graph-backbone, the model without a graph-backbone
performs much worse, especially on predicate prediction,
confirming our second takeaway from our pilot study that a
graph-backbone is essential for scene graph prediction.

Object Predicate

R@5 mR@5 R@3 mR@3

Relationship 0.75 0.38 0.94 0.63
Object + Predicate 0.77 0.41 0.96 0.66
Obj + Pred + Rel 0.77 0.43 0.96 0.67

Table 4. Pre-training language supervision. We ablate what
language supervision is required for 3D scene graph pre-training.
Combining relationship supervision with separate object and pred-
icate supervision yields the best results.

Learned Representation. In Fig. 4, we analyze the pre-
trained representation space for objects and predicates by
visualizing a t-SNE projection of the learned features. As a
comparison, we additionally provide feature projections for
our method fine-tuned on 3DSSG without pre-training. Us-
ing our pre-training, we have learned a more structured 3D
feature representation for objects and predicates, by having
anchored our 3D graph features to the well-structured text
embedding. Having this structured latent representation al-
lows us to achieve significant improvements in the down-
stream task of 3D scene graph prediction when fine-tuning
from this embedding space.
Text supervision. During pre-training, we provide three
types of text embeddings as our supervision signal. First,
the text embedding of objects, second the text embedding
of predicates and third a composed embedding of the rela-
tionship in the form “A scene of a [subject] is [predicate]
a [object]”. In Tab. 4, we ablate the effects for each target
text embedding. Providing the composed relationship form
already contains all the information about the objects and
predicates, but we observe that only providing the relation-
ship as supervision produces inferior results compared to
providing individual embeddings for objects and predicates.
We assume that this corresponds to the issue that CLIP and
related models are not good at understanding complex com-
positional scenes [13, 39, 66]. In our supplementary, we
provide further analyses to examine which parts in relation-
ships text descriptions CLIP attends to. Combining object,
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Object Predicate

R@5 mR@5 R@3 mR@3

CLIP ViT-B/32 0.77 0.43 0.96 0.62
CLIP ViT-L/14 0.77 0.43 0.96 0.62
CLIP ViT-L/14 (PCA) 0.76 0.41 0.96 0.61
BERT [10] 0.74 0.38 0.95 0.61

Table 5. Text model ablation. We ablate the effects of different
text models and their embedding space. We find that CLIP works
better than BERT, however different transformer sizes do not affect
the final 3D scene graph prediction.

predicate, and relationship embeddings during pre-training
results in the best pre-trained model.
Effect of the language model. In Tab. 5, we consider al-
ternative language models to our selected CLIP ViT-B/32
model. We consider BERT [10], which is a popular lan-
guage model trained on large amounts of text data, rather
than multi-modal image-text training from CLIP with its
variant bert uncased L-8 H-512 A-8 from [51]. We also
choose CLIP ViT-L/14 which is another CLIP model, but
with a larger text transformer. The language features from
CLIP ViT-L/14 have a dimensionality of D = 768. We,
therefore, have to adapt the architecture of our projectors
to match the dimensionality of the language features from
CLIP ViT-L/14. Additionally, we try to project the 768-
dimensional features to 512 dimensions using PCA. We
find CLIP’s rich embedding structure from the multi-model
training produces better results compared to the text-based-
only model BERT. However, we observe that using a larger
CLIP model does not improve the pre-training effective-
ness. The projected CLIP features using PCA produce
slightly worse results. We assume this is because some in-
formation in the CLIP embedding gets lost when projecting
its latent space to a lower dimension.

4.4. Zero-shot room classification

In Fig. 5 we show one of many possible use cases granted
by our language-aligned scene graph features. Given the
unique property of our 3D scene graph method representing
node and edge features in the well-structured CLIP repre-
sentation space, we are able to query the graph in a zero-
shot manner. One use case that leverages this represen-
tation, is querying the room type of the scene. Here, we
exploit the fact that the features in our 3D scene graph
are aligned with the language features from objects that
have a high feature similarity with the room that they cor-
respond to. For this, we encode candidate room types
like kitchen, bathroom, living room, etc. using the CLIP
language encoder to get the features fq1 , f

q
2 , ..., f

q
n ∈ RD

for each room query. Then we encode a scene s us-
ing our language-aligned graph backbone and use average-
polling to pool the features from all nodes in the graph
fSG = φ(fn,1, fn,2, ..., fn,k), where φ : RK×D→D. Fi-

“Bathroom”, 
“Bedroom”, 
“Living room”,
“Kitchen”, “…”

Bedroom

Living room
Kitchen

Bathroom

Office

Dining room

CLIP Text Feature Space

Hallway

Figure 5. Zero-shot room type classification. Utilizing the
language-aligned graph features we can classify the room type of
a scene by similarity scoring the feature embedding of a room de-
scription and our 3D graph features. Two successful classification
examples are shown.

nally, we compute the similarity cosine score between the
pooled graph feature and the candidate room types and se-
lect the room type with the highest similarity score us-
ing argmaxq{cos(fSG, f

q
n)}. Fig. 5 shows qualitative re-

sults for two diverse examples for our room type predic-
tion together with the abstracted methodology. We are able
to successfully classify a bathroom and a living room by
their language-aligned 3D graph features. Since this exper-
iment is performed in a zero-shot manner, no quantitative
results are available, however, we provide more predictions
in our supplementary. This is one of many possible use
cases made possible by our language-based pre-training and
language-aligned latent graph features. Note, that this ap-
proach is different from recent open-vocabulary 3D under-
standing methods such as [41, 63]. Although we are able to
exploit the relatedness of features in language space, we are
not able to query unseen object and predicate classes since
our language pre-training was done with a fixed vocabulary.
We leave open-vocabulary 3D scene graph prediction to be
investigated in future works.

5. Conclusion
In this paper, we find that recent pre-training approaches for
3D scene understanding on point clouds are ineffective for
3D scene graph prediction due to the inability to properly
represent relations among objects. To this end, we introduce
Lang3DSG, the first graph-based pre-training approach de-
signed explicitly for 3D scene graphs, that exploits the tight
connection between scene graphs and natural language. In
the experimental study, we demonstrate that our method
is more effective than existing pre-training baselines and
achieves better performance than SOTA fully-supervised
approaches on the 3DSSG dataset. Additionally, we show
a zero-shot room type prediction use case based on exploit-
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ing language-aligned 3D graph features. In conclusion, our
work contributes to 3D scene graph prediction, which is an
important prerequisite for a wide range of downstream ap-
plications relying on accurate scene representations.
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Lang3DSG: Language-based contrastive pre-training
for 3D Scene Graph prediction

Supplementary Material

This document supplements our work Lang3DSG:
Language-based contrastive pre-training for 3D scene
graph prediction by providing (i) reproducibility informa-
tion on our implementation and architecture (Sec. 6), (ii) de-
tails on the importance of negative samples during train-
ing (Sec. 7), (iii) investigations into the understanding ca-
pabilities of CLIP for compositional scene descriptions
(Sec. 8), (iv) additional 3D scene graph generations from
diverse scenes (Sec. 9), (v) additional examples of zero-shot
room type classification using our language-aligned fea-
tures (Sec. 10),

6. Reproducibility

Our encoder consists of two PointNets which pass fea-
tures of size 256 to a 4-layer GCN, where g1(·) and g2(·)
are composed of a linear layer followed by a ReLU ac-
tivation. The projectors are 3-layer MLPs with ReLU
activation in the first two layers and feature dimensions
of [256, 1024, 512] for CLIP ViT-B/32 and BERT and
[256, 1024, 768] for CLIP ViT-V/14. During fine-tuning, we
replace the projectors with object and predicate prediction
MLPs consisting of 3 linear layers with feature dimensions
[256, 512, class num] with batch normalization and ReLU
activation.

The training is performed on 1 NVIDIA A100 GPU with
80 GB memory.

7. Role of negatives during pre-training

In Sec. 3 of the main paper, we describe our contrastive
pre-training. We use a cosine similarity loss to distill the
knowledge of CLIP into our 3D graph model. For this,
we differentiate between positive cases where our goal is
to maximize the cosine similarity (see Eq. 6) and negative
cases where our goal is to minimize the cosine similarity
(see Eq. 7). This formulation is adapted from classical con-
trastive representation learning, where negative samples are
needed to prevent a collapse of the latent representation.
However, since we are trying to distill the knowledge di-
rectly from CLIP, negative samples are not strictly neces-
sary. However, in Fig. 6, we show the difference in the
learned latent embedding with and without negatives. It
is important to note that both training with negatives and
without negatives produce a structured latent embedding.
However, we find that the latent representation for individ-
ual classes trained without negatives is much more mixed.
This mix of class embeddings leads to a reduced effect of

(a) Objects (b) Predicates
w/o negatives

(c) Objects (d) Predicates
16 negatives

Figure 6. t-SNE embedding for pre-training w/ and w/o nega-
tives. We observe better clustering for objects and predicates using
negatives.

Object Predicate

num negatives R@5 mR@5 R@3 mR@3

0 0.74 0.40 0.95 0.65
16 0.77 0.43 0.96 0.67
32 0.76 0.42 0.96 0.66

Table 6. Role of negatives. Using negatives during pre-training
produces better fine-tuned results. The best results are achieved
using 16 negatives.

our pre-training which can be seen in Tab. 6.

8. CLIP relationship understanding
In this section, we investigate the relationship understand-
ing capability of CLIP, raised from our findings in Tab.
4 from the main paper. A couple of works have investi-
gated the understanding capabilities of CLIP for composi-
tional scenes [13, 38, 65]. In contrast to these works which
study the vision-language understanding of CLIP, our focus
lies on language understanding only. The applicability of
their investigations is therefore uncertain for our approach.
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(a) Highlight subject (b) Highlight predicate (c) Highlight object

Figure 7. CLIP embedding space for complex relationships. We provide the same t-SNE projection for the same CLIP embeddings,
highlighted by subject in (a), by predicate (b) and by object in (c). We observe that the embedding mostly clusters by subject. Some
clustering can be observed for the object in the relationship. However, CLIP appears to attend less to the predicate in the relationship since
no clustering for multiple classes can be observed.

However, our experiments in Tab. 4 indicate that CLIP is
only able to extract limited knowledge from provided rela-
tionship descriptions of the form ”A scene of a [subject] is
[predicate] a [object]”. To validate this issue, we perform
an additional experiment visualizing the generated embed-
dings with CLIP in Fig. 7. We plot the embeddings for all
combinations for subject, predicate and objects from a sub-
sampled set of 27 object classes and 27 predicate classes
resulting in 273 = 19683 unique relationships. We embed
these relationships with CLIP and project their features us-
ing t-SNE. In Fig. 7 we provide this projection three times,
with colored coding for the subject in (a), color coding for
the predicate in (b), and color coding for the object in the
relationship in (c). We observe that the feature projections
generally cluster together by subject, with some clustering
also appearing for objects. However, there does not appear
to be particular clustering for predicates. This indicates that
the investigations about compositionality from [13, 38, 65]
also apply to the language-only part of CLIP. We see the
potential for future research in training CLIP-like models to
understand complex relationships.

9. Additional 3D scene graph predictions

Here we provide additional 3D scene graph predictions for
a diverse set of 3D scenes. Overall, these examples confirm
the results from the main paper. Most nodes and edges are
predicted correctly with some edges being predicted par-
tially correctly and only a very few nodes and edges are
misclassified.

10. Additional zero-shot room type predictions
Here we provide additional qualitative examples for our
proposed zero-shot room type classification. We provide
different 3D scenes with their softmax probability based on
the similarity scores between the pooled 3D graph feature
and the text queries. We analyze the zero-shot capabilities
on 3RScan, which consists of mostly indoor home scenes.
We, therefore, choose to evaluate the room types ”bath-
room”, ”dining area”, ”kitchen” and ”living room”. There
are no room-based labels in the datasets, therefore we evalu-
ate the room type prediction on a qualitative basis only. We
observe that the zero-shot predictions are very accurate and
with high confidence in most of the cases. However, we no-
tice that scenes representing dining areas get misclassified
as living rooms. In this experiment, we note that the simi-
larity between the text embedding of ”dining area” and our
language-aligned 3D graph features is generally low, result-
ing in a small softmax score for all scenes. For the dining
area scenes, however, this similarity score is considerably
higher but gets outscored by text queries with a stronger re-
sponse.
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Figure 8. 3D scene graph predictions.
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Figure 9. Zero-shot room type predictions.
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